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A B S T R A C T 

Technologies like self-driving cars and cleaning robots are emerging as 

mainstream technologies. These technologies make use of cognitive 

recognition. Non-negative matrix factorization (NMF) is one such 

technique that is popularly used for computer vision and hidden pattern 

recognition. NMF is prone to noises because it assumes the image signal 

to be linearly reconstructed. This work proposes an algorithm to increase 

the effectiveness of NMF and reduces the data to lower dimensions and 

add informational presentation which improves the clustering results of 

NMF. 

The effectiveness of the proposed model is measured by comparing them 

on attributes namely accuracy, homogeneity, and inertia. Some of the 

models that we used include K-means, PCA+K-means, NMF+K-means, 

Autoencoder + PCA + K-means. Our proposed model is observed to be 

the most effective for clustering denoised data. The algorithm also takes 

care of the different fault detections and gives a non-linear method based 

on NMF.  Here, we first used autoencoders which are given input data to 

learn the non-linear mapping so that it can be transformed into high-

dimensional space.  By using the decomposition rule, we divided our 

feature space into two parts: The first one comprises the encoder, NMF, 

and decoder. This method of DNMF is a non-linear framework that can 

further be extended to other linear methods. The proposed method also 

expands the NMF's application range as it can also accept non-negative 

input.  
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1. INTRODUCTION  
 

In the past few years due to the recent increase in 

demand for intelligent automobiles, a lot of research 

developments are taking place to further extemporize 

self-driving vehicles. Different domains like computer 

vision, audio analysis, loss data generation, image 

segmentation, hidden pattern detection, and capturing 

information from raw data require advanced algorithms 

and the most advanced architectures. There is an 

extensive amount of research needed to find efficient 

algorithms and architectures that give promising results. 

If we take an example of a car image, any given part loss 

can easily be identified (suppose the front wheels are 

missing), and we can easily manipulate the car image by 

attaching that missing part. To solve such interpretability 

issues, we propose DNMF (Deep Non-negative matrix 

factorization) that can help to learn deep representation 

which contains spatial and temporal information of data. 

To discover the underlying potential of NMF with the 

deep neural network, we have found a way to connect 

NMF and autoencoders. Encoders convert input data to 

low dimensional data, while decoders do exactly the 

opposite that is transform the encoded data back to 

original data by reconstitution of encoded data. This way 

helps to accomplish better accuracy. But these existing 

techniques are dependent on a two-stage way to add 

NMF and encoders-decoders. Autoencoders help to 

extract deep representation so that NMF can work on top 

of that. Since both of these parts are mutually divided the 

above method does not learn from each other. 

Additionally, the above approach is sensitive to noise in 

input data which negatively impacts the reliability and 

performance in a real-world application. (Duong, Hseih, 

Bao & Wang, 2014) To resolve such problems, we 

propose a DNMF (Deep Non-Negative Matrix 

Factorization) model that contains multiple layers of 

NMF in combination with a pooling layer followed by 

back-propagation. In DNMF architecture, two networks 

learn from each other, on one side we have a student 

network, and on another, we have a supervisor network. 

This model learns a deep representation of data and 

delivers results with noised data. The supervisor and 

student network combination handle interpretability loss 

as it is given in the trained parameter. In our model, we 

have applied three types of losses Symmetric loss which 

supervises the supervisor network, non-negative 

constraint loss for handling interpretability loss and 

apposition loss which supervises the student network. 

 

2. RELATED WORK 
 

Non-negative matrix factorization (NMF) is a prominent 

algorithm that is well-established for an application like 

computer vision, data clustering, signal processing, and 

bioinformatics (Duong et al,2014)(Ye, Chen & Zheng, 

2018)(Buciu Nikoliadis & Pitas, 2008)(Jia, Liu, Hou & 

Kwong,2021)(Gocken & Yaktubay, 2019). To extract 

useful information from such massive data is like finding 

a needle in a stack of hay. Algorithms like Linear 

Embedding, Principal component analysis are not 

independently capable to operate on such an amount of 

data effectively and efficiently. To handle such a vast 

amount of data, there is a need for algorithms that can 

effectively do dimensionality reduction. In NMF we 

have to represent a data matrix which is the 

multiplication result of the base matrix and weight 

matrix. In NMF, we want to decompose the matrix into 

two matrices. For a given matrix V with m rows and n 

columns, where each element is non-negative, NMF will 

decompose the matrix W with m rows and r columns and 

matrix H with r rows and n columns where each of their 

elements is also non-negative (Jia et al,2021).  

 
In machine learning, it is often necessary to reduce the 

feature space of a dataset, for ease of computation. NMF 

is a relatively new way of reducing the dimensionality of 

our dataset, into a linear combination of bases. Existing 

methods include Principal Component Analysis (PCA) 

which weights with positive and negative values to blend 

one representation. Vector Quantization (VQ), which is 

sort of the nearest neighbor algorithm, consists of bases 

of prototype observation and the single closest one is 

selected (Bando, Mimua, Itoyama, Yoshi & Kawahara, 

2018). NMF accepts non-negative constraints and 

therefore, it can deal with the representation of non-

negative data features in a better way. It is similar to 

PCA, wherein it assigns weight to a set of bases to blend 

a representative observation, but the weights are bound 

to be positive, which is how part-based representation is 

learned by NMF. A customized k-means clustering-

based picture segmentation technique is suggested. This 

technique's modified form incorporates the k-means 

clustering algorithm, a de-noising factor connected to 

each pixel's velocity field, and edge distinction using the 

Canny edge detector (Islam, Nahar, Islam, Islam, 

Mukhajee & Ali, 2021). The retrieval of celebrity 

cartoon images is a difficult task because there are 

variances in terms of caricatures and styles. built a 

Clustering-based Tree with backtracking to present a 

fresh way for effectively retrieving cartoon images. 

 

3. METHODOLOGY 
 

This section elaborates on the data used, the model used, 

the optimizations needed, the algorithmic complexity, 

and the evaluation and scoring method used in this work.  

 

3.1. Dataset 
 

The dataset plays an impeccable role in determining the 

kind of feature extraction and eventual retrieval 

efficiency. The image and text retrieval task generally 

require challenging natural language processing and a 

convolutional neural network model for extracting the 

features in a condensed form. Thus, two major datasets 

with diverse categories were used. Firstly, we used 

70,000 labeled gray images describing the handwritten 

digits from 0 to 9, from the MNIST dataset, which are 

dimension 28×28 in size. This work carries out the 
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DNMF model process and other comparative methods, 

and measures the quality by the coincidence with the 

correct labels, using the images in the datasets. It is one 

of the most popular datasets commonly found being 

exploited in domains like object detection, segmentation, 

captioning datasets, and natural language processing. 

 
Secondly, the Fashion-MNIST dataset consisting of a 

similarly big corpus of 70,000, 28x28 dimensional gray 

images with 10 different labels was also employed. It has 

a vivid variety of images of fashion clothing items such 

as trousers, coats, sneakers, and many others. 

 
3.2. The Deep Non-Negative Matrix 

Factorization Model 
 

The deep matrix factorization model comprises two 

sections, first the supervisor network, and second the 

student network. Both networks contain encoders and 

decoders. The contrast between the student network and 

the supervisor network is that the student network 

contains an NMF package between encoders and 

decoders. As we all know deep neural network 

(Bhattamishra, 2018) (Guo, Zhao, Nie, Ruan & Li, 

2020)( Salakhutdinov & Murray, 2008) is good at taking 

out deep representations in unsupervised learning by 

remodeling the inputs. The main objective of the deep 

neural network is analogous to the supervisor network in 

DNMF. 

 

 

Figure 1. Matrix V is decomposed into a low-

dimensionality matrix W and a matrix H. 

 

The user can specify r, the inner dimension of W and H, 

as long as it is r < min(m,n). We see that each column of 

V, v can be calculated as v = W*h. 

 
In a similar fashion to the supervisor network, encoders 

and decoders pull out deep representations of given data. 

Some amount of noise and attenuation is added to add 

similarity in real-world data. Both networks learn from 

each other. By mixing the noise with the data, the student 

network is given noisy data, to generate noise-free data. 

Whereas, supervisor data get noiseless data. In our DNMF 

architecture, we have inserted an NMF module between 

encoders and decoders which discloses interpretability 

(Dhand, Sheoran, Agarwal & Biswas, 2022). The work of 

NMF is to factorize the output of encoders and with the 

help of matrix multiplication helps to decode the generated 

representation. (Sangwan & Bhatnagar, 2020) If we take 

the example of vanilla NMF, we can say that it adheres to 

matrix factorization patterns and non-negative constraints. 

In our model, we do not do two-stage training but in the 

student network, we have secured the NMF between 

encoders and decoders. For installing the hidden feature, 

we have used the sigmoid function in the NMF module. 

 

 

Figure 2. Architecture of the DNMF model consisting of 

supervisor and student network 
 

From the architecture of DNMF, it is visible that we 

are feeding our data to both a supervised network and 

a student network. We are transforming the data to 

retrieve the hidden pattern and information in the 

supervisor network. By adding random noise as input 

to the student network, we have tried a real work-like 

scenario where we get lots of adulterated input data. 

NMF with encoders and decoders helped in the 

process to generate feature extraction and 

reconstructing the output. NMF has proved its 

efficiency in varied areas (Mao & Saul, 

2004)(Devarajan,2006)(Magkanas, Bagan, Sistac & 

Garcia, 2021) (Kherwa & Bansal,2019).  We can 

retrieve deeply hidden features with the help of both 

networks. Student networks' main objective is to learn 

features without disturbance whereas supervisor 

networks assist in finding untapped information. 

 
3.3. Optimizations 
 

The optimization of the model primarily deals with 

improved loss-generating methodology. It involves a 

combination of three losses, namely, the symmetric loss, 

non-negative constraint loss, and apposition loss, whose 

aggregation forms the interpretability loss function. All 

of these losses contribute in their way to reconstructing 

the original data from the noisy data. The symmetric loss 

is the typical one that contributes to the reconstruction 

loss for generating the original image. Taking the 

symmetric decoder and encoder into account, the 

symmetric loss can be represented as: 

 
                                         ∑   

   ∥∥     ∥∥ 
            (1) 

 
Here, the ||·||2 denotes the Euclidean norm and the 

number of data points is represented by N. The ith 

original data and the ith reconstructed data are expressed 

as xi and yi respectively. 
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This symmetric loss is the guiding force for the 

supervisor network to draw out the essential features 

from the reconstructed information. 

 
Similarly, the student network is dependent on the 

apposition loss to gather the appositive features and it 

contains two additional layers as compared to the 

number of layers in the supervisor network. This loss can 

be expressed as: 

 

     ∑   
   (∑  

   
    ∥∥  

   
  ̃ 

   
∥∥ 

 
 ∑   

        ∥∥  
   

 

 ̃ 
     

∥∥ 

 
)                                             (2) 

 

Here, the i
th

 input data is xi.xi=xi(0), and the 

corresponding extracted feature from the lth layer of the 

student network is denoted by hi. 

 
Then there is another kind of loss that occurs due to the 

difference between the input to the decoder and the 

output of the encoder which is passed on to the NMF 

network, called the non-negative constraint loss. This 

occurs when the supervisor network hands over all the 

extracted features and hidden patterns in the data to the 

student network which in turn extracts the relevant 

information from the noise that would contribute to the 

network's intrinsic learning’s. It is expressed as: 

 

            ∑   
    ∥∥    ̂ ∥∥ 

 
 ∑   

    ∥∥             ∥∥ 

 

 ∑   
    ∥∥        (        )∥∥ 

 

                (3) 
 

The aggregation of a weighted contribution of these three 

losses is the interpretability loss function and it can be 

represented as: 

 
                Lin =  Lsym +  Lap +  Lnc             (4) 

 
Symmetric functions produce the same loss when they 

underestimate and overestimate the same absolute error. 

However, an asymmetric stall function applies a different 

penalty to different stall directions. 

 
Non-negative constraints: Every decision variable in any 

linear programming model must be positive whether the 

objective function is to maximize or minimize the net 

present value of an asset. 

 
The lack of interpretability (the ability to explain or present 

in terms that a human can understand) and the introduction 

of potential bias has given rise to ethical and legal problems. 

Here, the weightage of all three losses, symmetric loss, non-

negative constraint loss, and apposition loss is fine-tuned by 

the hyperparameters α, β, and γ. 

 

 

 

3.4. Algorithm Complexity 

Let's say, there are N samples present in each of the input 

datasets and the dataset containing noise. Then the 

number of iterations performed, assuming that after 

processing the entire dataset n times the overall 

algorithm involved in the method converges, is of the 

order of O(nN).   

 
There are two major networks involved in the model that 

perform differently, but important tasks, and each of 

them takes part in processing the datasets in each 

iteration. One of them is the student network that 

comprises a fixed-size supplementary NMF module layer 

and the other one is a supervisor network with 'S' number 

of layers, thus causing the DNMF to have a depth of the 

order of O(S). The changes in parameters and extraction 

of features involved in the whole process are a result of 

the forward feed and back-propagation performed on 

each of the layers. Suppose there are a maximum of M 

features in all the layers in the model, then the space 

complexity and the number of parameters in each layer 

will be O(M2). The time complexity of the forward feed 

and the back-propagation also needs to be accounted for 

to get the overall complexity. So, the complexity of the 

addition and multiplication operations performed on the 

parameters during each of the processes of forward feed 

and back-propagation is O(M2). The associated 

complexity of the activation function and the derivation 

function is O(M). Hence, the time complexity of each 

layer in the model is of the order of O(M2). 

 
Thus, algorithm complexity for the overall model can be 

boiled down to the order of O(nNSM2) because the time 

complexity for each symmetric loss, non-negative 

constraint loss, and apposition loss are O(M), which is 

insignificant in comparison to the overall complexity. 

Also, the space complexity for the model is of the order 

of O(SM2). 

 
3.5. Evaluation and Scoring 
 

The performance metrics like accuracy, homogeneity, 

and inertia were used for assessing and evaluating the 

performance of the denoising clustering models 

(Shivaprasad, Guru, Kavitha & Saritha, 2022)(Gao, 

Shen, Yu & Zhang, 2020). Clustering is usually 

employed to solve unsupervised learning problems, that 

can be differentiated into different segments and this 

process heavily relies on the number of clusters. 

Therefore, making the correct number of clusters can 

deeply affect the efficiency as well as allocation of 

resources. This process is usually done before we do a 

heavy amount of computational process. Therefore, the 

amount of reliance on this process is very essential for 

further computational accuracy.  

 
For the comparative analysis of different methods, we 

utilized the accuracy metric, which is generally used to 

measure the characteristics of the classification. In the 
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proposed model, accuracy represents the estimate of how 

well the clustering has been done based on the class 

labels and is defined as: 

 

             ̂     
 er  

 
 

 
∑     

            ̂        

                                                                      (5) 
                                                 

where P is the set of all permutations in [1: K] where K 

is the number of clusters. 

Homogeneity is characterized by the homogeneous 

nature of an image or object. Homogeneous clustering 

refers to clustering where all data points in each cluster 

belong to only a particular class. The score for 

homogeneity can vary between 0 (least homogeneous) to 

1 (maximal homogeneity). It's defined as: 

 

                     
 ( true    re  )

   true  
                       (6) 

Another valuable metric, inertia, is an indicator of the 

quality of clustering by K-means. It is defined as the sum 

of squares of the distance between the centroid of the 

cluster and each data point in it. 

 

               ∑   
          

                               (7) 
 

A model with good clustering capability is marked by the 

qualities of a low number of clusters and a low value of 

inertia. Therefore, these metrics need to be evaluated for 

each model used. Finally, we can compare the results 

procured by applying this process to the two datasets. 

 

4. RESULTS AND DISCUSSION 
 

Accuracy, Homogeneity, and Inertia are performance 

measures that quantify the quality of clustering of the 

images concerning the query. These metrics are applied 

to the clusters obtained by applying different models in 

the MNIST and fashion-MNIST datasets. 

 
Table1. Comparative analysis of models on the MNIST 

dataset 

Comparative 

Methods Accuracy Homogeneity Inertia 

K-means 0.5726 0.4816 2359030.8549 

PCA + K-

means 0.5238 0.419 490183.8788 

NMF + K-

means 0.4414 0.3649 658.0024 

AE + PCA + 

K-means 0.5531 0.4687 3673136.0 

AE + NMF + 

K-means 0.3817 0.2754 1351.0283 

DNMF 0.5922 0.5737 5484.9726 

In the above table1 we can observe the accuracy of the 

machine learning techniques K-means :0.5726, PCA + 

K-means: 0.5238, NMF + K-means:0.4414,  AE 

+ PCA + K-means: 0.5531, AE + NMF + K-

means: 0.3817,  DNMF:0.5922. Here we got K-means 

technique 0.5726 accuracy.  

 
In this work, we have discussed how different models 

perform clustering on denoised images. It shows the 

accuracy, homogeneity, and inertia of clustering across 

two datasets, the first being MNIST (70k images) and the 

second fashion MNIST (70k images). The accuracy of 

DNMF for MNIST (text to image) is 0.5922 and for 

fashion-MNIST is 0.5013. and if we observe the 

Homogeneity and Inertia K-means is acceptable.  Upon 

comparing the results across both datasets, we can say 

that DNMF has better clustering capability for noisy 

datasets. 

 
Table 2. Comparative analysis of different clustering models 

on the fashion-MNIST dataset 

Comparative 

Methods 

Accurac

y 

Homogenei

ty Inertia 

K-means 0.4765 0.4081 

3368350.41

98 

PCA + K-means 0.4474 0.3469 371902.0 

NMF + K-means 0.3986 0.2927 545.6482 

AE + PCA + K-

means 0.4618 0.3824 

5232518.10

45 

AE + NMF + K-

means 0.3722 0.2170 1583.8133 

DNMF 0.5013 0.4652 3496.0538 

 

5. CONCLUSION AND FUTURE SCOPE 
 

This paper proposes a model that recognizes the deep 

interpretable representations of denoising information. 

This DNMF model broadly comprises two essential 

networks, the first one being a supervisor network that 

deals with the noiseless data, and the other one being a 

student network that works on the non-negative 

constraints and deals with retrieving relevant information 

from data containing noise. It serves the purpose of 

producing part-based representations from this noisy 

data. Extracting the vital meaning or aspects from this 

kind of data is the responsibility of the interpretability 

loss in the model. Comparing the results obtained from 

the proposed DNMF and other models, by applying them 

to the two datasets, shows the effectiveness and better 

performance of the DNMF model. The model becomes 

more efficient as more samples are fed and the quality of 

results should go up. Also, more deep matrix 

factorization models employing similar architecture can 

be explored for representing multimodal data. 
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