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A B S T R A C T 

Erythemato-squamous diseases (ESDs), also known as erythrodermas, are 

a group of dermatological disorders characterized by both redness 

(erythema) and scaling (squamous) of the skin. These conditions can have 

various causes and implications. The implications of ESDs vary 

depending on the specific condition and its severity. While some may 

cause mild symptoms and have minimal impact on daily life, others can be 

chronic, recurrent, and significantly affect a person's physical and 

emotional well-being. Treatment options for these conditions may include 

topical medications, oral medications, phototherapy, and lifestyle 

modifications. In this paper, state of art machine learning (ML) 

algorithms is implemented for classification of ESD. To classify the 

disease a set of 11 clinical features and 23 histopathological features are 

considered. The performance of the ML classifiers is analyzed with 

individual sets of features and combination of both. Further, the 

performance of the ML classifiers is analyzed at different training rates to 

know the superior classifier for ESD classification. Furthermore, the study 

is extended to investigate the effectiveness of the Kruskal-Wallis algorithm 

in ranking the importance of features in the dataset used for disease 

classification. An investigation depicts that Ensemble and SVM classifiers 

outperformed the other ML classifiers in terms of accuracy and F1-score. 

© 2024 Published by Faculty of Engineeringg  
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1. INTRODUCTION  
 

Erythrodermas, referred to as ESDs, encompass a group 

of dermatological conditions characterized by both skin 

redness and scaling. These disorders can arise from 

various underlying causes and have wide-ranging 

implications (Banu & Toacşe, 2013). Some common 

ESDs and their key features are as follows. 

 

Psoriasis: Psoriasis is a chronic autoimmune disease 

that causes rapid skin cell turnover, resulting in the 

formation of thick, scaly patches of skin. The exact 

cause of psoriasis is unknown, but it is believed to 

involve a combination of genetic and environmental 

factors.  The disease can have significant implications 

on a person's quality of life, causing physical 

discomfort, itching, pain, and emotional distress (Singh 

et al., 2022). 

 

Seborrheic dermatitis: It is a common inflammatory 

skin condition that mainly affects areas rich in 

sebaceous glands, such as the scalp, face, and chest. It is 

characterized by redness, greasy or flaky scales, and 

itching. While the exact cause is unclear, factors like 

yeast overgrowth, genetic predisposition, and certain 

neurological conditions may contribute to its 

development. Seborrheic dermatitis can be chronic and 

recurrent but is not considered a serious medical 

condition (Basu et al., 2015). 

 

Eczema (atopic dermatitis): It is a chronic inflammatory 

skin condition that is often associated with allergies and 

immune system dysfunction. It leads to red, itchy, and 

inflamed skin, which may also develop scaling or 

weeping blisters. The exact cause of eczema is not fully 

understood, but genetic factors, environmental triggers, 

and abnormalities in the skin barrier function are 

believed to play a role. Eczema can have a significant 

impact on a person's quality of life, causing discomfort, 

disrupted sleep, and psychological distress (Badrinath et 

al., 2020). 

 

Pityriasis rosea: It is a self-limiting skin rash 

characterized by the appearance of a larger "herald 

patch" followed by numerous smaller scaly patches. The 

exact cause of pityriasis rosea is unknown, but it is 

thought to be associated with viral infections, 

particularly human herpesvirus 6 (HHV-6) or human 

herpesvirus 7 (HHV-7). Pityriasis rosea typically 

resolves on its own within several weeks to months and 

does not generally have long-term implications. 

 

Lichen planus: It is a chronic inflammatory disorder that 

affects the skin, mucous membranes, hair, and nails. It is 

characterized by small, itchy, flat-topped, polygonal bumps 

that can develop a lacy white pattern and may cause 

erosions or ulcers. The exact cause of lichen planus is 

unknown, but it is believed to involve an abnormal 

immune response. Lichen planus can be chronic and may 

cause discomfort or pain in severe cases. 

While some diseases may cause mild symptoms and 

have minimal impact on daily life, others can be 

chronic, and recurrent, and significantly affect a 

person's physical and emotional well-being. Treatment 

options for these conditions may include topical 

medications, oral medications, phototherapy, and 

lifestyle modifications. If you suspect you have an ESD 

or any other medical condition, it is important to consult 

with a healthcare professional for an accurate diagnosis 

and appropriate management (Xie et al., 2012). These 

conditions often share similar symptoms, making their 

classification and diagnosis challenging. The precise 

symptom may differ in accordance with the underlying 

disease (Ravichandran et al., 2014). 

 

Here are some general symptoms associated with these 

conditions: 

 

Redness (Erythema): The affected skin usually appears 

red, inflamed, or irritated. 

 

Scaling (Squamous): The skin may develop flakes, 

scales, or patches of thickened skin that can be white, 

silver, or greyish. 

 

Itching: Itchiness is a common symptom in ESDs. The 

severity can range from mild to severe and may 

significantly affect the quality of life. 

 

Rash: Rashes may be present, and their appearance can 

vary depending on the specific disease. They may be 

well-defined or more diffuse. 

 

Dryness: The affected skin may become dry and rough, 

leading to discomfort and a tendency to crack or fissure. 

 

Burning or stinging sensation: Some individuals may 

experience a burning or stinging sensation in the 

affected areas. 

 

Flares and remissions: ESDs often exhibit a cyclic 

pattern of flares and remissions, with symptoms 

worsening during flare-ups and improving during 

periods of remission. 

 

Location-specific symptoms: The distribution and location 

of symptoms may vary depending on the specific 

condition. For example, psoriasis commonly affects the 

scalp, elbows, knees, and lower back, while seborrheic 

dermatitis often involves the scalp, face (especially the 

eyebrows and nasolabial folds), and chest. 

 

Various classification systems have been proposed to aid 

in the identification and management of these diseases. 

Here is a general overview of the classification of ESD 

(Polat & Güneş, 2009). The traditional classification 

system divides ESDs into two main categories based on 

the presence or absence of fungal infection. Non-

infectious ESDs category includes conditions such as 

psoriasis, seborrheic dermatitis, lichen planus, pityriasis 
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rosea, and cutaneous lupus erythematosus. The infectious 

ESDs category includes fungal infections like tinea 

corporis (ringworm), tinea versicolor (pityriasis 

versicolor), and candidiasis. Over time, researchers have 

proposed modifications to the traditional classification 

system to incorporate new knowledge and improve 

diagnostic accuracy (Polat & Güneş, 2006). These 

revisions often consider additional factors such as 

histopathology, immunopathology, and genetic markers. 

For example, the expansion of non-infectious ESDs may 

include subcategories based on distinctive clinical and 

histological features, as well as response to treatment. 

This can aid in the differentiation of conditions such as 

psoriasis, seborrheic dermatitis, and lichen planus. Given 

the overlapping clinical features of ESDs, an accurate 

differential diagnosis is crucial. Dermatologists rely on a 

combination of clinical evaluation, patient history, 

physical examination, and, in some cases, laboratory tests 

to differentiate between these conditions (Abdi & Giveki, 

2013). Features such as lesion morphology, distribution, 

and associated symptoms are carefully assessed to arrive 

at a proper diagnosis. 

 

The purpose of this study is to develop and implement 

machine learning algorithms for accurately classifying 

ESDs. The primary aim is to improve the diagnostic 

process and enhance the accuracy of disease 

classification. Further, the study is extended to 

investigate the effectiveness of the Kruskal-Wallis 

algorithm in ranking the importance of features in the 

dataset used for disease classification. The paper could 

explore how this ranking technique helps in selecting 

the most relevant features for improved classification 

performance. This objective could focus on 

demonstrating how the reduction of irrelevant features 

contributes to enhanced model performance and 

efficiency. 

 

The paper is structured as detailed below. Section II 

outlines the experimental setup, including data 

preprocessing, feature extraction, feature ranking with 

the Kruskal-Wallis algorithm, model training, and 

evaluation procedures. The methodology of the 

classifiers is presented in section III. Section IV 

presents the results of the experiments in a clear and 

interpretable manner i.e., the comparative performance 

of different machine learning algorithms and the impact 

of feature ranking on classification accuracy. Section V 

discusses the implications of the findings in the context 

of ESD classification and the broader field of medical 

diagnostics. 

 

2. LITERATURE & FREAMEWORK 
 

ML algorithms can be used to analyze clinical data, 

such as patient symptoms, medical history, and visual 

representations of skin lesions, to aid in the 

classification and diagnosis of ESDs.  

 

Investigation of use of Convolutional Neural Networks 

(CNNs) in classifying ESDs is presented (Tekin, 2014).  

Using a dataset of 10,000 high-resolution images of 

different ESD cases, the authors trained a CNN model 

to detect and categorize these diseases. The 

methodology benefited from data augmentation and 

transfer learning, leveraging pretrained models for 

enhanced accuracy.  

 

The model achieved a commendable 95% accuracy on 

the test set. However, the paper faced limitations in 

terms of a potentially non-diverse dataset predominantly 

from a single ethnic group, possibly limiting its 

generalizability across diverse populations. It is 

compared traditional ML techniques, specifically 

Support Vector Machines (SVM), with newer deep 

learning methods in classifying ESDs (Kaushik et al., 

2023). The study utilized a dataset containing both 

clinical data and patient history for 5,000 cases. While 

the SVM demonstrated an accuracy of 85%, the deep 

learning model surpassed this with a 92% success rate. 

One significant advantage of this study was its 

incorporation of non-image data, providing a holistic 

approach. However, the research's limitation lay in the 

relatively smaller dataset, which might not capture all 

the nuances of ESD manifestations. 

 

A hybrid model that combines the strengths of 

traditional machine learning (Random Forest) and deep 

learning is presented (Putatunda, 2020). The 

methodology utilized a diverse dataset of 15,000 entries, 

blending clinical images and patient medical histories. 

Through feature integration, the hybrid model achieved 

an impressive accuracy of 95%. The robustness of this 

research was its comprehensive dataset, which 

encompassed varied ethnic backgrounds and age 

groups. However, a limitation noted was the increased 

computational cost and complexity due to the hybrid 

nature of the model, potentially hindering its 

deployment in real-time or resource-limited settings. 

 

In (Li et al., 2022), it delves into the potential of 

Recurrent Neural Networks (RNNs) to trace the 

progression of Erythemato-Squamous Diseases over 

time. Utilizing a time-series dataset of 7,000 patients, 

where images were taken at various stages of disease 

development, the authors established an RNN model 

that aimed to predict disease progression patterns. The 

methodology notably excelled in handling sequential 

data, with the model achieving 89% accuracy in 

predicting future disease states. Nevertheless, the 

paper's limitation was evident in its reliance on well-

documented and time-stamped data, which may be 

challenging to procure in real-world scenarios. 

 

In (Spolaôr et al., 2023), it explored the viability of 

using transfer learning techniques for ESD 

classification. Leveraging popular pre-trained networks, 

the authors fine-tuned these architectures using a 

modest dataset of 3,000 ESD images. The methodology 
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highlighted the practicality and cost-effectiveness of 

transfer learning, yielding a respectable 90% accuracy 

rate without necessitating extensive training data or 

computational power. The primary advantage was the 

resource efficiency of the model, making it accessible 

for smaller clinics or research setups. However, the 

study's main limitation is its dependency on pre-existing 

architectures, which might not be optimally designed for 

dermatological image nuances. 

 

 

Figure 1. Proposed Framework 

 

Figure 1 represents the framework of the proposed ESD 

classification. The steps involved in the framework as 

follows.  

Data collection: Relevant clinical data and images of 

skin lesions are collected from patients diagnosed with 

different ESDs. The data may include information about 

symptoms, patient demographics, and any other factors 

that could contribute to the classification. 

Preprocessing: Removal of noise, normalizing the 

features and handle missing values are performed in this 

stage. This step is crucial to ensure the quality and 

consistency of the data. 

Feature extraction: Relevant features are extracted from 

the preprocessed data. In the case of ESDs, features 

could include characteristics of skin lesions, such as 

color, texture, shape, and distribution. 

Training data preparation: The dataset gets split into 

two parts: a training set and a testing set. We use the 

training set to teach the machine learning model, and the 

testing set to see how well it works. 

Model training: Many ML methods, including decision 

trees, SVMs, K-Nearest Neighbors (KNN), and 

Ensemble classifiers, can be taught using the features 

we found. These models understand how the features 

are connected to the ESD labels, learning the patterns 

and relationships between them. 

Model evaluation: In this phase, evaluating the model 

using the testing dataset to assess its classification 

performance. Evaluation metrics like accuracy, 

precision, recall, and F1-score are commonly used to 

measure the model's effectiveness. 

 

3. MACHINE LEARNING CLASSIFIERS 
 

3.1 Decision Trees (DT) 
 

Decision tree classifiers are widely used in ML for both 

regression and classification tasks. The DT classifier is 

constructed using a training dataset, which consists of 

labeled examples. The algorithm uses a recursive 

process called recursive binary splitting to partition the 

data based on the feature values. The goal is to find the 

best feature and the best split point that maximizes the 

information gain or Gini impurity (a measure of how 

well the feature splits the data based on class labels) 

(Danjuma & Osofisan, 2014). The splitting process 

continues recursively until a stopping criterion is met. 

This could be a maximum depth limit, a minimum 

number of samples required to split, or when all samples 

belong to the same class. 

 

3.2 SVM Classifiers 
 

SVMs are powerful machine learning models used for 

both classification and regression tasks. They operate by 

finding an optimal hyperplane that separates data points 

into different classes or predicts continuous values 

(Subbarao et al., 2023).  

 

 

Figure 2. Hyperplane in SVM Classification 

 

Figure 2 depicts the hyperplane representation to 

distinguish two classes. One of the key features of 

SVMs is the use of kernels. Kernels allow SVMs to 

operate efficiently in high-dimensional feature spaces 

without explicitly calculating the coordinates of the data 

points. The linear kernel is the simplest and most 

commonly used kernel. It represents a linear decision 

boundary in the input space. It works well when the data 

is linearly separable. The polynomial kernel maps the 

original features into a higher-dimensional space using 

polynomial functions. It can capture non-linear 

relationships between the data points. The kernel 

function is defined as  

 

                     (1) 

 

where,   is a constant and d is the degree of the 

polynomial. 

 

The RBF kernel is popular in SVMs because of its 

flexibility. It defines a similarity measure between data 

points based on their Euclidean distance in the feature 

space. The kernel function is defined as  

                                (2) 

where,   is a hyperparameter that controls the influence 

of each training example. 
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The sigmoid kernel maps the features into a higher-

dimensional space using a sigmoid function. It can 

capture non-linear relationships, but it is generally less 

commonly used compared to other kernels. The kernel 

function is defined as  
 

                       (3) 
 

SVMs also allow the use of custom kernels, where you 

can define your own similarity measure. This is useful 

when the data has a specific structure or when domain 

knowledge suggests a particular kernel. 

 

3.3 KNN Classifiers 
 

K-Nearest Neighbors (KNN) is a non-parametric and 

instance-based algorithm, meaning that it doesn't make any 

assumptions about the underlying data distribution and 

instead relies on the proximity of training examples to 

make predictions. The choice of the K value is crucial. A 

small K may lead to over fitting, where the model becomes 

too sensitive to noise, while a large value of k may result in 

under fitting, where the model becomes too biased and 

fails to capture local patterns. It is typically chosen through 

experimentation and cross-validation. The distance metric 

determines how distances are calculated between data 

points. Euclidean distance is commonly used for 

continuous features, while other metrics like Manhattan 

distance or Hamming distance may be used for specific 

types of data.  
 

 

Figure 3. KNN Classification 
 

Figure 3 represents the classification with different values 

of k. Further, it's often recommended to scale the features 

to ensure that they contribute equally to the distance 

calculation. This is important when features have different 

scales or units. Common scaling techniques include 

normalization or standardization (subtracting mean and 

dividing by standard deviation). KNN classifiers are 

complex, especially for large datasets. Techniques like 

KD-trees or ball trees can be used to optimize the nearest 

neighbor search process and improve efficiency. 

 

3.4 NN Classifiers 
 

Classification with Neural Network (NN) classifiers 

involves training a NN model to classify input data into 

different classes. NNs are composed of interconnected 

nodes (neurons) organized in layers, and they learn to 

extract relevant features from the input data through a 

training process. Figure 4 depicts basic architecture of NN 

classifier.  

 

Figure 4. NN Classifier 

 

3.5 Ensemble Classifiers 
 

Classification with ensemble classifiers involves 

combining multiple individual classifiers to make more 

accurate predictions than any single classifier alone 

(Subbarao et al., 2023). Ensemble classifiers are known 

for their ability to improve predictive performance, 

increase robustness, and reduce over fitting. 

 

3.5 Kruskal-Wallis Feature Ranking Algorithm 

 
Kruskal-Wallis is a non-parametric statistical test used 

in machine learning for feature ranking when dealing 

with non-normally distributed data or categorical 

variables. It extends the one-way ANOVA test and 

evaluates whether there are significant differences in the 

distributions of a continuous target variable across 

different groups or levels of a categorical feature. In 

contrast to ANOVA, Kruskal-Wallis doesn't assume 

data normality, making it suitable for a wider range of 

datasets. It operates by ranking the data values and 

comparing the average ranks between groups. Kruskal-

Wallis is useful when the target variable violates 

assumptions of parametric tests or when the data 

exhibits non-linear relationships. By assessing feature 

significance based on target variable distribution 

differences among groups, Kruskal-Wallis helps in 

selecting relevant features for classification or 

regression tasks, improving model interpretability and 

generalization. 

 

4. RESULTS & DISCUSSIONS 
 

To identify ESDs using ML classifiers a dataset of size 358 

samples that includes 11 clinical features (e.g., age, gender, 

symptoms) and 23 histopathological features (e.g., cell 

counts, tissue characteristics) for patients with ESDs. The 

simulated dataset information is shown in Table 1.  

 
The simulations are carried with two different training rates 

80% and 70%. In each case 10% data has taken for the 

validation. The test set for evaluating the models are 20% 

and 30% respectively. The training set is used to train the 

models, the validation set is used for hyper parameter 

tuning, and the test set is reserved for final evaluation. 

MATLAB software is used for the simulation.  
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Table 1. Dataset Information 

S.No Skin Diseases Class Quantity 

1 Psoriasis 111 

2 Pityriasis rubra pilaris 20 

3 Chronic dermatitis 48 

4 Lichen planus 71 

5 Pityriasis rosea 48 

6 Seborrheic dermatitis 60 

                     Total 358 

  

Table 2 and 3 depicts the statistical information of the 

clinical and histopathological features for the input 

dataset respectively.  

 

Table 2. Statistical Information of the clinical features  

S.No Clinical Features Max. Min. Mean Median 

1 Erythema 3 0 2.078212 2 

2 Scaling 3 0 1.807263 2 

3 Definite borders 3 0 1.569832 2 

4 Scalp involvement 3 0 0.530726 0 

5 Oral Mucosal 

involvement 
3 0 0.379888 0 

6 Koebner phenomenon 3 0 0.636872 0 

7 Knee and elbow involvement 3 0 0.622905 0 

8 Follicular papules 3 0 0.170391 0 

9 Polygonal papules 3 0 0.449721 0 

10 itching 3 0 1.354749 1 

11 Family history 1 0 0.122905 0 

Table 3. Histopathological Features  

S.No Clinical Features Max. Min. Mean Median 
1 Melanin incontinence 0.410615 0 3 0 

2 
Vacuolisation damage 

basal layer 
0.460894 0 3 0 

3 Eosinophils infiltrate 0.142458 0 2 0 
4 PNL infiltrate 0.547486 0 3 0 
5 Follicular horn plug 0.106145 0 3 0 

6 
Inflammatory 
mononuclear infiltrate 

1.877095 2 3 0 

7 acanthosis 1.955307 2 3 0 
8 hyperkeratosis 0.511173 0 3 0 
9 parakeratosis 1.287709 1 3 0 

10 Clubbing rete ridges 0.662011 0 3 0 
11 Elongation rete ridges 0.98324 0 3 0 

12 
Thinning suprapapillary 

epidermis 
0.642458 0 3 0 

13 Spongiform pustule 0.298883 0 3 0 
14 Focal hypergranulosis 0.399441 0 3 0 

15 
Disappearance granular 
layer 

0.47486 0 3 0 

16 
Fibrosis papillary 

dermis 
0.315642 0 3 0 

17 Spongiosis 0.949721 0 3 0 

18 
Saw tooth appearance 

retes 
0.458101 0 3 0 

19 exocytosis 1.368715 2 3 0 

20 
Perifollicular 

parakeratosis 
0.117318 0 3 0 

21 Munro microabcess 0.368715 0 3 0 
22 Band like infiltrate 0.558659 0 3 0 
23 Age 36.29609 35 75 0 

 

Table 4 presents the performance of different ML 

algorithms with different feature sets. It presents the 

performance of the ML classifiers with 11 clinical 

features and 23 histo-pathological features and 

combined 34 features. The performance is also 

measured at 80% training rate and 70% training rate. 
 

Table 4. Performance of Different ML classifiers with Different feature sets 

                                   
Category 

Classifier 

Performance 

with Clinical 

Features (11) 

Performance 

with Histo-

pathological 

Features (23) 

Performance 

with all 

features  

(34) 

Performance 

with Clinical 

Features (11) 

Performance with 

Histo- 

pathological 

Features (23) 

Performance 

with all features  

(34) 

  % of Training - 80 %Training rate -70 

Decision 

 Trees 

Fine 81.7 93 95.9 80.6 89.7 94.5 

Medium 83.1 93 95.9 80.6 89.7 94.5 

Coarse 70.4 77.5 78.1 70.8 79.4 78 

SVM 

Linear 88.7 95.8 98.6 86.1 95.3 95.4 

Cubic 87.3 95.8 95.9 81.9 94.4 91.7 

Quadratic 87.3 94.4 97.3 81.9 95.3 95.4 

Coarse Gaussian 87.3 87.3 93.2 81.9 86 89.9 

Medium Gaussian 90.1 93 94.5 87.5 96.3 94.5 

Fine Gaussian 64.8 38 30.1 55.6 43 34.9 

Ensemble 

Subspace KNN 87.3 85.9 97.3 880.6 92.5 94.5 

Bagged Trees 88.7 94.4 97.3 86.1 93.5 97.2 

Boosted Trees 88.7 95.8 30.1 83.3 91.6 30.3 

RusBoosted Trees  90.1 95.8 100 81.9 95.3 100 

Subspace Discriminant 88.7 97.2 98.6 83.3 93.5 97.2 

KNN 

Fine  88.7 88.8 93.2 77.8 88.8 94.5 

Medium 87.3 95.8 94.5 81.9 92.5 94.5 

Coarse 80.3 85.9 83.6 62.5 76.6 77.1 

Cosine 87.3 94.4 94.5 83.3 93.5 93.6 

Cubic 87.3 97.2 94.5 80.6 90.7 93.6 

Weighted 88.7 97.2 94.5 84.7 89.7 93.6 

Neural  

Networks 

Narrow 84.5 95.8 94.5 86.1 90.7 93.6 

Medium 87.3 95.3 94.5 83.3 95.3 93.6 

Wide 85.9 97.2 93.2 84.7 94.4 93.6 

Bi layered 88.7 95.8 93.2 79.2 93.5 92.7 

Tri layered 85.9 94.4 93.2 86.1 91.6 90.8 
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Table 5. Performance metrics of ML classifiers with all 34 Features 

Category Classifier 
Accuracy 

(%) 
Precision Recall 

F1 

Score 

Accuracy 

(%) 
Precision Recall 

F1 

Score 

  % of Training - 80 70 

Decision 

 Trees 

Fine 95.9 0.96 0.96 0.96 94.5 0.92 0.92 0.92 

Medium 95.9 0.96 0.96 0.96 94.5 0.92 0.92 0.92 

Coarse 78.1 0.63 0.56 0.60 78 0.64 0.56 0.59 

SVM 

Linear 98.6 0.98 0.99 0.98 95.4 0.95 0.96 0.95 

Cubic 95.9 0.95 0.96 0.96 91.7 0.86 0.93 0.89 

Quadratic 97.3 0.97 0.97 0.97 95.4 0.95 0.96 0.95 

Coarse Gaussian 93.2 0.86 0.95 0.90 89.9 0.80 0.93 0.86 

Medium Gaussian 94.5 0.91 0.96 0.93 94.5 0.92 0.95 0.93 

Fine Gaussian 30.1 0.16 0.05 0.07 34.9 0.21 0.38 0.27 

Ensemble 

Subspace KNN 97.3 0.97 0.95 0.95 94.5 0.947 0.92 0.933 

Bagged Trees 97.3 0.96 0.98 0.96 97.2 0.975 0.97 0.972 

Boosted Trees 30.1 0.05 0.05 0.05 30.3 0.16 0.05 0.076 

RusBoosted Trees  100 1 1 1 100 1 1 1 

Subspace Discriminant 98.6 0.98 0.99 0.98 97.2 0.97 0.96 0.964 

KNN 

Fine  93.2 0.945 0.94 0.942 94.5 0.937 0.954 0.945 

Medium 94.5 0.93 0.968 0.95 94.5 0.937 0.953 0.944 

Coarse 83.6 0.70 0.69 0.695 77.1 0.619 0.613 0.615 

Cosine 94.5 0.93 0.968 0.948 93.6 0.926 0.943 0.934 

Cubic 94.5 0.93 0.968 0.948 93.6 0.926 0.943 0.934 

Weighted 94.5 0.93 0.968 0.948 93.6 0.926 0.943 0.934 

Neural  

Networks 

Narrow 94.5 0.935 0.948 0.941 92.7 0.958 0.963 0.960 

Medium 94.5 0.94 0.945 0.942 92.7 0.915 0.933 0.924 

Wide 93.2 0.922 0.930 0.926 92.7 0.915 0.933 0.924 

Bi layered 93.2 0.922 0.930 0.926 92.7 0.915 0.933 0.924 

Tri layered 93.2 0.927 0.932 0.923 89.9 0.89 0.90 0.895 

 

Table 6. Feature Rankings from Kruskal-Wallis Algorithm 

Rank Feature Score 

1 Vacuolization damage basal layer 132.1187 

2 Saw tooth appearance rates 132.0557 

3 Melanin incontinence 131.205 

4 Polygonal papules 131.1427 

5 Fibrosis papillary dermis 130.8129 

6 Perifollicular parakeratosis 130.621 

7 Band like infiltrate 129.9214 

8 Focal hypergranulosis 129.0225 

9 Clubbing rete ridges 127.7499 

10 Thinning  suprapapillary epidermis 126.1007 

11 Oral mucosal involvement 125.2916 

12 Elongation rete ridges 115.1145 

13 Follicular horn plug 107.1768 

14 Knee and elbow involvement 98.7087 

15 Follicular papules 87.6082 

16 exocytosis 83.6033 

17 Scalp involvement 83.0768 

18 spongiosis 79.3603 

19 Munro microabcess 77.6436 

20 PNL infiltrate 64.9176 

21 Koebner phenomenon 51.2436 

22 Spongiform pustule 50.9313 

23 Definite borders 50.0011 

24 Disappearance granular layer 45.9134 

25 itching 40.7342 

26 parakeratosis 40.3839 

27 scaling 34.1644 

28 Family history 25.2672 

29 Eosinophils infiltrate 19.1216 

30 age 17.9604 

31 acanthosis 16.946 

32 erythema 16.8651 

33 hyperkeratosis 16.5467 

34 Inflammatory mononuclear infiltrate 16.5164 

 

Table 6 represents the rankings of different features 

obtained by Kruskal-Wallis algorithm.  

 

Table 7 represents the performance metrics of ML 

classifiers with best 30 features Similarly, Table 8 and 9 

represents the performance of ML classifiers with best 

25 and 20 features respectively.  

 

Table 7. Performance Metrics with best 30 features 

Category Classifier 
Accuracy 

(%) 
Precision Recall 

F1 

Score 

Decision 

 Trees 

Fine 93.2 0.92 0.93 0.92 

Medium 93.2 0.92 0.93 0.92 

Coarse 78.1 0.63 0.56 0.60 

SVM 

Linear 93.2 0.91 0.93 0.92 

Cubic 94.5 0.93 0.93 0.93 

Quadratic 93.2 0.91 0.93 0.92 

Coarse Gaussian 93.2 0.91 0.93 0.92 

Medium 
Gaussian 

93.2 0.91 0.93 0.92 

Fine Gaussian 74 0.61 0.69 0.65 

Ensemble 

Subspace KNN 93.2 0.918 0.922 0.919 

Bagged Trees 93.2 0.92 0.93 0.92 

Boosted Trees 93.2 0.92 0.93 0.92 

RUS Boosted 

Trees  
95.9 0.956 0.953 0.954 

Subspace 
Discriminant 

94.5 0.937 0.937 0.93 

KNN 

Fine  95.9 0.955 0.952 0.953 

Medium 93.2 0.924 0.92 0.921 

Coarse 79.5 0.63 0.59 0.609 

Cosine 93.2 0.924 0.92 0.923 

Cubic 94.5 0.937 0.937 0.937 

Weighted 94.5 0.937 0.937 0.937 

Neural  
Networks 

Narrow 94.5 0.88 0.91 0.89 

Medium 94.5 0.95 0.95 0.95 

Wide 94.5 0.95 0.95 0.95 

Bi layered 91.8 0.91 0.89 0.90 

Tri layered 94.5 0.95 0.943 0.94 
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Table 8. Performance Metrics with best 25 features 

Category Classifier 
Accuracy 

(%) 
Precision Recall 

F1 

Score 

Decision 

 Trees 

Fine 95.9 0.96 0.96 0.96 

Medium 95.9 0.96 0.96 0.96 

Coarse 78.1 0.63 0.56 0.60 

SVM 

Linear 100 1 1 1 

Cubic 97.3 0.97 0.97 0.97 

Quadratic 98.6 0.98 0.98 0.97 

Coarse Gaussian 94.5 0.90 0.95 0.93 

Medium Gaussian 97.3 0.94 0.98 0.96 

Fine Gaussian 57.5 0.44 0.73 0.55 

Ensemble 

Subspace KNN 97.3 0.968 0.968 0.968 

Bagged Trees 95.9 0.964 0.962 0.963 

Boosted Trees 95.9 0.965 0.962 0.963 

RUS Boosted 

Trees  
98.6 0.987 0.983 0.985 

Subspace 

Discriminant 
97.3 0.968 0.968 0.968 

KNN 

Fine  97.3 0.968 0.968 0.968 

Medium 97.3 0.968 0.968 0.968 

Coarse 82.2 0.66 0.58 0.617 

Cosine 97.3 0.968 0.968 0.968 

Cubic 97.3 0.968 0.968 0.968 

Weighted 97.3 0.968 0.968 0.968 

Neural  

Networks 

Narrow 95.9 0.95 0.96 0.954 

Medium 95.9 0.95 0.96 0.956 

Wide 95.9 0.95 0.96 0.956 

Bi layered 94.5 0.94 0.945 0.942 

Tri layered 95.9 0.95 0.96 0.947 

 

Table 9. Performance Metrics with best 20 features 

Category Classifier 
Accuracy 

(%) 
Precision Recall 

F1 

Score 

Decision 

 Trees 

Fine 95.9 0.96 0.96 0.96 

Medium 95.9 0.96 0.96 0.96 

Coarse 78.1 0.63 0.56 0.60 

SVM 

Linear 97.3 0.97 0.98 0.97 

Cubic 93.2 0.89 0.93 0.91 

Quadratic 95.9 0.95 0.96 0.96 

Coarse 
Gaussian 

94.5 0.91 0.95 0.93 

Medium 

Gaussian 

93.2 0.89 0.94 0.91 

Fine Gaussian 32.9 0.19 0.38 0.26 

Ensemble 

Subspace KNN 98.6 0.987 0.983 0.984 

Bagged Trees 97.3 0.977 0.976 0.976 

Boosted Trees 95.9 0.965 0.962 0.963 

RUS Boosted 

Trees  
98.6 0.987 0.983 0.984 

Subspace 
Discriminant 

97.3 0.968 0.968 0.968 

KNN 

Fine  93.2 0.919 0.946 0.932 

Medium 94.5 0.932 0.968 0.949 

Coarse 79.5 0.648 0.67 0.658 

Cosine 94.5 0.932 0.968 0.949 

Cubic 94.5 0.932 0.968 0.968 

Weighted 94.5 0.932 0.968 0.968 

Neural  

Networks 

Narrow 95.9 0.95 0.96 0.954 

Medium 95.9 0.95 0.96 0.956 

Wide 95.9 0.95 0.96 0.956 

Bi layered 94.5 0.94 0.945 0.942 

Tri layered 95.9 0.95 0.96 0.947 

 

Within Tables 7, 8, and 9, SVMs employing linear and 

cubic kernel functions, as well as Ensemble classifiers, 

notably Rusboosted trees, consistently outperformed 

other machine learning models, even when utilizing a 

reduced set of features. This highlights the robustness 

and efficiency of these techniques in various scenarios, 

showcasing their potential as top-performing options in 

a range of predictive tasks. 

 

From the investigations, it is observed that by 

considering all the features for classification Linear 

SVM, Rusboosted Trees and subspace discriminant 

ensemble classifiers outperformed all other ML 

classifiers. After applying feature selection through 

kruskal-wallis algorithm, the performance of the most 

of the classifiers is increased because of reduction of 

redundant features. It is also observed that, Linear 

SVM achieved 100% accuracy with best 25 features 

and the maximum accuracy of all other classifiers is 

observed with 25 best features. From the investigations 

it is observed that feature selection algorithm also play 

a key role in identification of the ESD with high 

accuracy. The analysis underscores the significant 

potential of ML classifiers in enhancing the ESDs. 

Nonetheless, their effective deployment is contingent 

upon several pivotal factors. First and foremost, 

prioritizing data quality and reliability is imperative, 

given that ML models heavily rely on input data. 

Secondly, the prudent selection of suitable ML models 

customized for the specific ESD detection task is 

pivotal for achieving optimal performance. Finally, the 

interpretability of these models is essential for 

comprehending their decision-making processes and 

fostering trust in their outcomes. 

 

5. CONCLUSION 
 

This paper presents detailed investigations of state-of-

the-art ML models for the classification of ESDs. 

Leveraging a rich dataset comprising 11 clinical 

features and 23 histo-pathological features, the study 

investigates the performance of machine learning 

classifiers, both individually and in combination of 

feature sets. Through meticulous experimentation, the 

classifiers' effectiveness is examined under varying 

training rates of 80% and 70%. This extensive analysis 

revealed valuable insights into selecting the most 

suitable classifier for ESD classification. Furthermore, 

this study ventured into assessing the effectiveness of 

the Kruskal-Wallis algorithm in ranking the importance 

of features within the dataset—a critical step in 

understanding the disease classification process. 

Significantly, the findings highlight that Ensemble and 

SVM classifiers outperformed other ML models in 

terms of F1 score and % of accuracy. In the study, 

Linear SVM, Rusboosted trees, and subspace 

discriminant ensemble classifiers excelled in ESD 

classification when considering all features. Feature 

selection via Kruskal-Wallis improved classifier 

performance. Linear SVM achieved 100% accuracy 

with the best 25 features. These results underscore the 

potential of these classifiers in aiding the accurate 

identification of ESD, thus offering promising prospects 

for improved diagnostic and clinical decision-making in 

the field of dermatology. 
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