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A B S T R A C T 

The locomotion and route planning of humanoid robots has become one of the 

utmost promising areas of research as humanoids are used more frequently in 

various fields of industrial automation and manufacturing. In this study, an 

effective solution for the navigation of humanoid robots is promised by fuzzy 

logic controllers. The fuzzy rule-base built and tuned by a human operator 

must be kept accurate, consistent, and complete, but this is challenging. One 

kind of machine learning is the reinforcement learning approach. The field of 

robotics frequently employs this strategy. When we suppose that the sole 

information collected is a scalar signal which is a reward or punishment, it 

seeks to automatically learn the fuzzy rules and to build a control law for a 

humanoid robot in an unfamiliar environment. The robot navigation in this 

study makes use of fuzzy controllers and the Q-learning algorithm. The 

outcomes of the simulation demonstrate appreciable improvements in the robot 

behaviors and learning rate in compare to latest state of art techniques 

available in recent literature. The outcomes are evaluated and discussed. 

                                                   © 2024 Published by Faculty of Engineering  

 

 

 

 

 

1. INTRODUCTION  
 

A robot is considered humanoid if its general look is 

inspired by the human body (Kumar et al., 2019). 

Although certain types of humanoid robots may just 

represent a portion of the body, such as the upper torso, 

in general, humanoid robot consists of a torso with two 

arms, two legs and a head (Panwar & Kumar, 2012). 

Some humanoids could also be equipped with facial 

interfaces for their eyes, lips, and face (Kumar et al., 

2021). Because it can adjust to changes in its 

surroundings or in itself, a humanoid robot is 

autonomous (Lindner et al., 2023). Robots designed to 

look like humans are made to perform some of the 

mental and physical tasks that people do every day. 

Engineers, cognitive scientists, and linguists are just a 

few of the experts who work together to develop robots 

that are as human-like as feasible (Marchetti et al., 

2022). Their designers wanted the robot to recognize 

human aptitude, intelligence and behave similar to 

humans. If they are successful, humanoids may 

ultimately collaborate with us (Song & Kim, 2022). 

 

There are several challenges to overcome in order to 

create a humanoid robot. The most difficult part is 

keeping the robot balanced while it executes its activity. 

Because gravity impacts how much we weigh, much 

like humans, robots are affected by gravitational force. 



Kumar et al., Path planning of humanoid robots for stable motion using reinforcement learning based fuzzy logic 
controller 

 1594 

As a result, research in this area is still inspiring and 

challenging (Liu et al., 2023). Humanoids robots have 

gained widespread acceptance in society with the 

advancement of science and technology (Siciliano & 

Khatib, 2018). In a broad sense, humanoids are seen as 

entertainment robots, and in a limited sense, as robots 

that can aid humans. To replicate human deftness in a 

synthetic humanoid robot navigation system is a 

difficult task for researchers. The development of 

humanoid robots for environmental exploration and 

other humanoid robots to enhance maneuverability in a 

congested environment are both being made possible by 

the advancement of technology (Kumar, 2013). The 

biomechanics of human locomotion can be incorporated 

using this platform. As a result, robotics research places 

a high value on the application of locomotion and route 

planning to humanoid robots (Kumar et al., 2023). 

 

The problem of robotic agents’ locomotion has been 

studied by many researchers. A multiple robot’s path 

planning with few source and target points including 

various obstacles is visualized in Fig. 1 to show the 

need of controller program. In 1965, Zadeh (Zadeh, 

1999) invented the fuzzy notion for the first time. In the 

humanoid robot navigation system, Parhi (2005) 

adopted a fuzzy logic-based control paradigm. Samant 

et al. (2016) have suggested a technique for humanoid 

robot interaction in a congested environment. In order to 

validate the methodology, they use fuzzy logic in their 

experimental setup. A gait control strategy has been put 

forth by Wang et al. (2011) To address the issue of a 

humanoid robot's excessive energy consumption, they 

used fuzzy logic and an iterative process. An artificially 

intelligent humanoid robot has been proposed by Dadios 

et al. (2012) they demonstrated the humanoid robot's 

capacity to maintain balance, walk and circumvent 

obstructions. Mohanty and Parhi created a number of 

smart techniques for humanoid robot navigation that 

were inspired by nature (Singh et al., 2009).  

 

 
Figure 1. Multiple robots path planning with Source 

and Target Points 

 

Fuzzy logic was employed by Pandey et al. as a possible 

locomotion strategy to help humanoid robotic agents 

avoid obstacles in complex environments (Pandey & 

Sonkar et al., 2014, Pandey & Parhi, 2014). Through 

numerous simulations and trials, they confirmed their 

method. Fuzzy logic has also been employed by Lei and 

Qiang (2010) to enhance the robot's ability to quickly 

and accurately detect the ball. An uneven terrain control 

method for humanoid robots has been presented by 

Zhong and Chen (2016) For the creation of neural 

networks and fuzzy logic controllers, a specific swarm 

optimization approach was employed. A flexible 

humanoid robot designed to assist elderly people has 

been introduced by Mohamed and Capi (2012), they 

talked about kinematics, mechatronics, and other robot 

specifics.  The kinematics of a humanoid robot has been 

established by Flaherty et al. (2013). For the 

development of humanoid robots, Pierezan et al. 

approved the modified self-adaptive differential 

evolution (MSaDE) method, to confirm the 

effectiveness of MSaDE (Pierezan et al., 2017); they 

have conducted a number of trials. Children with 

disabilities like cerebral palsy and orthotics have been 

discussed by Wang et al. (2016). For the purpose of 

improving their treatment plans and reducing 

discomfort, they have deployed NAO humanoid robots. 

Robots with human-like features are trained to work like 

humans. A number of scholars (Pothal & Parhi, 2015; 

Eliot et al., 2012; Parhi & Mohanta, 2011; Kundu & 

Parhi, 2016) have made an effort to build the control 

architecture for humanoid robot route planning in 

complicated situations and have tested the effectiveness 

using appropriate simulation and experimental 

platforms. A humanoid robot and a person have imitated 

one other's poses, according to Lei et al. (2015). A pose 

similarity metric-based study was used to assess the 

imitation investigation between humans and humanoid 

robots. 

 

The majority of researchers have attempted humanoid 

robot navigation and path planning in challenging 

contexts, as can be seen from the thorough review of the 

literature. On the navigation of humanoid robots, 

however, very few studies have been documented. Only 

certain environmental circumstances are suitable for the 

development of navigational algorithms. A reliable 

control method that can guide humanoid robots through 

difficult terrain regardless of the weather is required 

(Kofinas et al., 2013).  

 

A petri-net control scheme is also employed to avoid the 

collision during multiple humanoid locomotion in the 

simulation environment. This scheme consists of few 

steps and provides priority to the humanoids based on 

the position of target, if the target is near to a particular 

humanoid than this humanoid has highest priority to 

move in the target direction and other humanoids exist 

on the workspace treated as static obstacles for a 

specified amount of time. (Muni et al., 2020).   

 

The major contribution of the authors in this research 

work includes 

1. Proposed a novel hybrid reinforcement 

learning based fuzzy logic controller for 
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humanoid robot locomotion in the workspace 

contains static and dynamic obstacles.  

2. Focuses on the collision free locomotion of the 

single and multiple humanoid robots in the 

defined workspace. 

3. Compare and contrast the proposed algorithm 

with state of art algorithms available in the 

literature and shows the superiority of the 

proposed technique in relation of locomotion 

speed, path smoothness and time taken to 

travel from source to destination. 

In this study, the fuzzy rule base is employed to 

ascertain the necessary limits and velocities for 

navigating around obstacles in the specified workspace 

and reaching the intended target position without any 

harm. The controller takes into account sensory data 

related to the lengths and angles of obstacles towards 

the target as inputs.   

 

For the implementation purpose of our idea, we use the 

Webot simulation software for simulations, and use an 

AMD RYZEN 5000 series processor machine equipped 

with 16 GB of RAM. 

 
The paper is organized as follows, second section 

formulate the problem, the third section describes about 

the fuzzy logic and navigational system for humanoid 

robots, fourth section explains the meaning of 

reinforcement learning and Q-learning with the 

development of reinforcement learning based fuzzy 

logic controller algorithm, in section-5 we implement 

and discuss the obtained results to show the superiority 

of proposed algorithm over others. Section-6 concludes 

the outcome. 

 
2. PROBLEM FORMULATION FOR 

OPTIMIZED LOCOMOTION 
 

Take into consideration a humanoid robot moving 

through a terrain with a start point (Xsp, Ysp), a target 

point (Xtp, Ytp), and an obstacle at (Xob, Yob). The terrain 

is made up of several robots that interact with one 

another to form dynamic barriers. Making the humanoid 

robot intelligent is the main goal in order to enable it to 

avoid both dynamic and static obstacles and arrive at the 

destination with the least amount of travel time. The 

robot should also ensure that the path is smooth and that 

it is the safest possible. In this section, the objective 

function for navigation is designed with following 

criteria in mind. The NAO humanoid robot is used to 

perform simulation experiments. The specific 

characteristics and configuration of NAO may be 

checked from Aldebaran robotics website. 

 

In mathematical terms the objectives should be 

formulated to circumvent impediments and facilitate 

seamless movements along the shortest route towards 

the goal.   The following two tactics will be 

implemented to achieve the tasks with minimal 

computational expenses.   
 

1. Goal seeking strategy: The shortest and 

easiest route drawing is the basic task of the 

robot’s route planning strategy for which the 

concept of Euclidean distance is utilized. For 

each point the robot distance from the target is 

updated to obtain the shortest distance between 

target and the robot. It should be expressed 

mathematically as 

 

                    (   )   [  ( )   ( ) (     )]              ( )      
  

Where pr (i), qr (i) is the coordinate of the 

robotic agent at i
th

 location. There should be n 

points between initial and goal point, and the 

resultant will be minimum.  

 

2. Obstacle avoidance strategy: This is also one 

of the fundamental requirements to avoid 

obstacle exist in the workspace for safe 

locomotion. It depends on the positions of 

obstacle and robot. Functionally we can 

express this problem as 

 

   (   )  [   ( )    ( ) (  ( )   ( ))]   ( )      
 

There must be a safe distance between the 

robotic agent at i
th

 position and j
th

 obstacle.   

 

3. FUZZY LOGIC AND FUZZY 

NAVIGATIONAL SYSTEM FOR 

HUMANOID ROBOTS 
 

3.1 Fuzzy logic 
 

Humanoid locomotion can be categorized into two 

distinct types: leg motion and trunk motion.   The 

calculation of leg movement can be determined by the 

prevailing environmental variables.   For example, if 

there is an obstacle during the leg's swinging phase, the 

foot may be able to surpass the obstacle by moving 

higher, while keeping the trunk stable.   To optimize 

locomotion stability, the trunk should progress while the 

humanoid robot ascends a hill. 

 

Fuzzy logic is a highly reliable control mechanism. 

Fuzzy logic is easily comprehensible, constructible, and 

applicable. Fuzzy logic can be applied to tackle 

engineering challenges using simple IF-THEN or IF-

ELSE statements. Fuzzy logic was initially conceived as 

a means of efficiently handling large volumes of data by 

assigning values to different variables. Rather than 

serving as a control mechanism, it is a form of 

mathematical reasoning aimed at solving problems. 

Instead of simply determining true or false, it measures 

the degree of truth.   The four fundamental components 

of a fuzzy logic controller include fuzzification of input 

variables, knowledge base, fuzzy reasoning, and 
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defuzzification. The work utilized fuzzy logic to devise 

a trajectory for a humanoid robot navigating through a 

crowded area with randomly placed obstacles. The 

subsequent part of the discussion elucidates the 

fundamental principles of fuzzy logic. The objective of 

the study is to design a fuzzy controller that can be used 

for path planning of a humanoid robot inside a specified 

workspace. 

 

3.2 Fuzzy navigational system for humanoid 

robots 

The primary goal of any robotic control strategy is to 

ensure the robot maintains the greatest possible distance 

from obstacles while also minimizing the distance to the 

intended target.   The robot employs a fuzzy logic 

system component to govern its artificial intelligence.   

This module ensures the equilibrium and steadiness of 

the robot during tasks such as walking and kicking.   

The software of the microcontroller, which is capable of 

being adjusted and altered, integrates fuzzy logic.   As 

the implementation is done through software, this 

procedure takes place within the microcontroller. The 

tilt sensor provides the input values, while the output 

values determine the correct positions of the servo 

motors. The basic model of fuzzy logic controller is 

shown in Fig. 2. 

 

Fuzzy logic is a methodology used in control systems to 

emulate the way humans make decisions by considering 

imprecise, ambiguous, erroneous, noisy, or incomplete 

input data.   Fuzzy logic, as a general principle, 

transforms precise sensor inputs, represented as crisp 

values into membership values ranging from 0 to 1.   

After obtaining the membership values and establishing 

the set of rules, fuzzy reasoning is employed.   The 

system employs a fuzzy set created from the preceding 

stage to govern the servo motors.   Fuzzy logic systems 

may effectively interpret imprecise data and produce 

practical outcomes.   Moreover, the robot can be 

operated without the need for excessively complex 

mathematical computations.   Furthermore, due to the 

fuzzy logic system's ability to rectify these faults, the 

physical structure of the robot does not necessarily have 

to be very exact and intricate.   Since fuzzy logic is 

implemented using software, making adjustments to the 

system is easier, more cost-effective, and does not 

necessitate more physical space, which would only 

increase the weight of the robot. 

 

The navigational characteristics must be carefully taken 

into account for humanoid robot navigation. 

Maintaining a minimal distance from the desired target 

and a maximum distance from the barrier is the 

fundamental goal of the control algorithm. Here, the 

controller's inputs for obstacles are the Very close (VC), 

Close (CL), distant (DT), Very distant (VD) and 

Bearing Angle (BA) to the target. Move left (MLT), 

Move ahead left (MAL), Move ahead (MAH), Move 

ahead right (MAR), Move right (MRT) are obtained as 

the intended outputs once the controller has been 

processed. Following is a description of how fuzzy rules 

and the controller operate. 

 

MLT: Move left 

MAL: Move ahead left 

MAH: Move ahead 

MAR: Move ahead right 

MRT: Move right 

 

3.3 Fuzzy Rule base 

 
Figure 2. Basic model of fuzzy logic controller 

 
Fuzzy linguistic variables for input and output 

 

 LT AL AH AR RT 

VC MAH MAR MAL MAL MAH 

CL MAH MAH MRT MAH MAH 

DT MAH MAH MAR MAH MAH 

VD MAH MAH MAH MAH MAH 

 

VC: Very close   CL: Close    

DT: Distant   VD: Very distant 

LT: Left   AL: Ahead left        

AH: Ahead  AR: Ahead right   

RT: Right 

 

3.4 Fuzzy membership functions 
 

1. If obstacle is very close (VC) and in left (LT) then 

move ahead (MAH)  

2. If obstacle is very close (VC) and in ahead left 

(AL) then move ahead right (MAR) 

3. If obstacle is very close (VC) and in ahead (AH) 

then move ahead left (MAL) 

4. If obstacle is very close (VC) and in ahead right 

(AR) then move ahead left (MAL) 

5. If obstacle is very close (VC) and in right (RT) 

then move ahead right (MAH) 

6. If obstacle is close (CL) and in left (LT) then move 

ahead (MAH) 

7. If obstacle is close (CL) and in ahead left (AL) 

then move ahead (MAH) 

8. If obstacle is close (CL) and ahead (AH) then 

move right (MRT) 

9. If obstacle is close (CL) and ahead right (AR) then 

move ahead (MAH) 

10. If obstacle is close (CL) and in right (RT) then 

move ahead (MAH) 
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11. If obstacle is distant (DT) and in left (LT) then 

move ahead (MAH) 

12. If obstacle is distant (DT) and in ahead left (AL) 

then move ahead (MAH) 

13. If obstacle is distant (DT) and ahead (AH) then 

move ahead right (MAR) 

14. If obstacle is distant (DT) and ahead right (AR) 

then move ahead (MAH) 

15. If obstacle is distant (DT) and in right (RT) then 

move ahead (MAH) 

16. If obstacle is very distant (VD) and in left (LT) 

then move ahead (MAH) 

17. If obstacle is very distant (VD) and in ahead left 

(AL) then move ahead (MAH) 

18. If obstacle is very distant (VD) and ahead (AH) 

then move ahead (MAH) 

19. If obstacle is very distant (VD) and ahead right 

(AR) then move ahead (MAH) 

20. If obstacle is very distant (VD) and in right (RT) 

then move ahead (MAH) 

 

4. REINFORCEMENT LEARNING 
 

Reinforcement learning (RL) is a machine learning 

approach that allows for the solution of a problem 

within a constrained timeframe by leveraging 

experimentally obtained information. An agent acquires 

the ability to optimize its interaction with a changing 

environment by employing reinforcement learning, 

which involves a process of experimentation and 

adjustment. The agent receives a scalar value as a 

reward for each action it takes. The agent aims to devise 

a strategy for decision-making that will optimize the 

anticipated total of discounted rewards. In the 

conventional framework of reinforcement learning, an 

agent engages with its environment through actions and 

perceptions. The agent assesses the state of the 

environment at each time step t and selects an action. 

The agent responds by receiving the scalar 

reinforcement signal rt from the environment, which 

then transitions into state st+1. The agent should make 

judgments that aim to maximize the cumulative value of 

the reinforcement signal over the long term.   Through a 

systematic process of trial and error, aided by a diverse 

set of methodologies, it can gradually acquire 

proficiency in this task. The membership function plots 

are shown in Fig. 3. 

 

4.1 Q-learning 

Q-Learning is an iterative dynamic programming that is 

used to address multistage decision issues. Among 

temporal difference algorithms, it is the most popular. 

The method consists of three primary components: an 

evaluation function, a reinforcement function, and an 

updating function. The objective of Q-learning is to 

construct a Q-function that maps the current state St and 

action at to a utility value Q (st, at), that predicts the total 

future discounted rewards obtained from the current   

 

 

Figure 3a. Input variable ―Distance (D)‖ 

 

 

Figure 3b. Input Variable ―Angular direction (ϕ)‖ 

 

 

Figure 3c. Output variable ―Deviation (δ)‖ 

 

 

Figure 3d. Output control surface shows the     

relationship between input and output variables 

 
Figure 3. Membership function plots of input and 

output variables of proposed fuzzy controller 
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Figure 4. Model of Q-learning technique 

 

action at. In that it learns the optimal policy function 

incrementally as it interacts with the environment after 

each transition (st, at, rt, st+1). The model of Q-learning 

process is shown in Fig  4. Fig. 5 and Fig. 6 

demonstrates the pseudo code of Q-learning technique 

and fuzzy Q-learning technique respectively. 

 

Figure 5. Pseudo code of Q-Learning technique 

 

 
Figure 6. Pseudo code for fuzzy Q-learning algorithm 

 

4.2 Optimization of fuzzy systems using Q-

learning algorithm 
 

The most promising approaches to illustrate quality 

functions with continuous spaces of states and actions 

are fuzzy inference systems (FIS). The objective is to 

roughly determine the related Q-value for each state 

using the following equation: 

 

      ̂     ( )                                ( ) 
  

The concept behind this optimization is to suggest 

multiple outcomes for each rule and to link each 

outcome with a quality function that will be assessed 

over time. The training process allows for the 

acquisition of optimal rules that optimize future 

rewards. The Q-learning algorithm with fuzzy logic is 

referred to as the RL based fuzzy logic algorithm. Fig. 7 

shows the flow chart of proposed reinforcement 

learning (RL) based fuzzy logic controller for humanoid 

robots. 

   

 
 

Figure 7. Flowchart of proposed RL based fuzzy logic 

controller for humanoid robots 

 

5. IMPLEMENTATION AND DISCUSSION 

OF THE PROPOSED RL BASED FUZZY 

LOGIC CONTROLLER IN HUMANOID 

ROBOT PATH PLANNING 

We use Webots simulator to implement all considered 

techniques including proposed controller. To perform 

experiments, we consider a humanoid NAO available in 

the Webots environment under proto nodes (Webots 

projects) to robots’ tab followed by Softbank to NAO. 

 
5.1 Locomotion of single robot using RA-ISMO, 

GWOC, PA-FLC, Simple fuzzy controller, and   

RL based fuzzy controller 

 
The locomotion of humanoid robots is simulated using a 

simulated NAO in Webots software. The simulation 

takes place on a terrain with dimensions of 200*240. 

The terrain comprises a single humanoid NAO robot, a 
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single source, a single target, and randomly positioned 

static obstacles. This setup is designed to assess the 

resilience of the proposed controller. Simulations are 

conducted for all controllers under consideration to 

compare their performance in terms of path length and 

time required to travel from the source to the target. 

Table 1 indicates that proposed technique shows an 

improvement of 5.31%, 1.25%, 4.75%, and 3.43% in 

path length with respect to RA-ISMO, GWOC, PA-FLC 

and Simple fuzzy controller. The values in bold 

indicates the average path length for a given technique. 

Table 2 shows the time spent to cover the same path 

from a specified source to the designated target and we 

have noticed an improvement of 45.02%, 8.16%, 

13.17% and 9.56% in the proposed technique with 

respect to RA-ISMO, GWOC, PA-FLC and simple 

fuzzy controller. The values in bold indicates the 

average time taken by a particular algorithm. 

 

Table 1. Relationship between simulated length (cm.) 

for RA-ISMO, GWOC, PA-FLC, simple fuzzy 

controller and RL based fuzzy controller 

 
 

Table 2. Relationship among simulated time spent (S) 

for RA-ISMO, GWOC, PA-FLC, simple fuzzy 

controller and RL based fuzzy controller 

 
 

5.2 Locomotion of multiple robots using RA-

ISMO, GWOC, PA-FLC, Simple fuzzy 

controller, and   RL based fuzzy controller 
 

To validate the efficacy of the proposed hybrid 

controller for multiple humanoid locomotion, two 

numbers of NAOs are considered for simulation of path 

planning in complex terrain. The results are 

demonstrated in the table 3, table 4 and figure 8a and 

8b. Table 3 indicates that proposed technique shows an 

improvement of 7.94 %, 3.39 %, 4.93% and 5.04 % in 

path length with respect to RA-ISMO, GWOC, PA-FLC 

and Simple fuzzy controller. The values in bold 

indicates the average path length for a given technique. 

Table 4 shows the time spent to cover the same path 

from a specified source to the designated target and we 

have noticed an improvement of 45.71%, 9.71%, 

15.54% and 10.01% in the proposed technique with 

respect to RA-ISMO, GWOC, PA-FLC and simple 

fuzzy controller. The values in bold indicates the 

average time taken by a particular algorithm.  

 

Table 3. Relationship between simulated length (cm.) 

for RA-ISMO, GWOC, PA-FLC, simple fuzzy 

controller and RL based fuzzy controller for two 

humanoids 

 
 

Table 4. Relationship among simulated time spent (S) 

for RA-ISMO, GWOC, PA-FLC, simple fuzzy 

controller and RL based fuzzy controller for two 

humanoids 

 
 

 

Figure 8 shows the Webots environment consisting of 

few static obstacles and paths from source to target. The 

environment consists of one humanoid NAO in figure 

8a and 8b with three and four static obstacles 

respectively whereas figure 8c and 8d consists of two 

humanoid NAO placed at random positions and 

environment has 4 static obstacles. The humanoid also 

treated as a dynamic obstacle for one another and moves 

towards the target with obstacle avoidance. We use 

petri-net scheme to decide the priority of humanoid to 

move toward the target direction. 
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a. Single humanoid NAO with three obstacles 

 

 
c. Two humanoid NAO with 4 obstacles one source 

and destination 

 
b. Single humanoid NAO with four obstacles 

 

 
d. Two humanoid NAO with 4 obstacles one source 

and destination with position change 

Figure 8. Single and multiple humanoid path planning with static obstacles in Webots 

 

6. Conclusion 

This work presents a novel approach to collision-free 

movement planning for single and multiple NAOs in 

dynamic complicated terrain. The approach combines a 

Reinforcement Learning based fuzzy controller with a 

petri-net model. The model of the controller has been 

built using the conventional Q-learning process. The 

proposed controller undergoes testing in a simulated 

environment, and the obtained results are compared to 

cutting-edge techniques in terms of path length and 

travel time. The gathered findings demonstrate that the 

suggested method produces superior results in terms of 

travel time and path length while travelling from a 

specified source to a targeted destination. 
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