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A B S T R A C T 

We present a numerical study for Poiseuille and Couette as well as Taylor- 

Couette swirling flows. The governing equations of momentum and energy are 

transformed into coupled and nonlinear ordinary differential equations using 

similarity transformation and then solved numerically. We critically evaluate 

the effect of dimensionless pressure gradients on fluid velocity and observed 

that the velocity increases as the dimensionless pressure gradient increases. 

Couette flows are simulated in different scenarios, including top plate moving, 

bottom plate moving, and top plate moving in adverse pressure gradient 

conditions. In a third scenario, the flow velocity profile revealed a backflow 

regime (BFR). A simple schematic model is, therefore, proposed to explain the 

presence of BFR in the flow’s profile. Numerical and analytical solutions 

around the circular cylinder are presented. The marginal discrepancy 

between the analytical and numerical profiles is maximum at ~ 900 and 2700 

degrees, which indicates that the chosen method is suitable and capable of 

reproducing engineering problems. Velocity magnitude and vector diagrams 

show that the cylinder shape was found to have a significant effect on the flow 

field. The velocity at the top and bottom of the cylinder is twice the velocity 

that seen away from the cylinder. 

© 2024 Published by Faculty of Engineering  

 

 

 

 

1. INTRODUCTION 
 

Analytical solutions are generally preferred to study the 

simple contour conditions of systems. For instance, 

analytical solutions are the most sought-after options when 

the modeling leads to a linear differential equation. 

Nevertheless, analytical solutions cannot obtain exact 

solutions when the presence of non-linear differential 

equations is imminent. On the other hand, numerical 

methods may provide approximate solutions even if the 

boundary conditions become complex and the fluid flow 

become transient. With the advent of the most powerful 

computers capable of performing calculations at relatively 

higher speeds, there is a rapid development that enabled 

several researchers to use different numerical methods in 

fluid flow engineering. Alexandre Joel Chorin introduced 

the first numerical method for solving incompressible 

viscous flow problems in 1947.             
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Numerical and finite difference methods have been used 

in various applications, such as modeling Navier-Stokes 

equations for vortex generation, pipe flow, Couette 

flow, static structural analysis, wave analysis, etc. As far 

as the ionosphere and atmosphere studies are concerned, 

understanding viscous effects is crucial for modeling 

and predicting ionospheric phenomena like plasma 

convection and ion transport (Potula et al., 2011; 

Brahmanandam et al., 2012; Brahmanandam et al., 

2020; Uma et al., 2016). Understanding viscous effects 

aids in studying air quality near the surface.  

 

Numerical methods have been adapted to solve many 

problems and prove cheaper than experimental results. 

However, since the numerical techniques use 

approximations, the mathematical models have to be tested 

for various boundary conditions and governing equations 

to obtain a reliable solution. A lot of research is being 

conducted on the stability of such numerical models and 

the reliability of the solution obtained by these methods 

(Lin, 1961; Hughes, 1972, and references therein). 

 

Plane Hagen- Poiseuille (after J. L. M. Poiseuille and G. H. 

L Hagen) flow is broadly defined as a steady and laminar 

flow of a viscous fluid between two horizontal parallel 

plates separated by an appropriate distance. In Poiseuille 

flow, a constant pressure gradient (dp/dx) is applied across 

the length of the plate flow. It is exemplified by a two-

dimensional (2D) velocity profile (v(y)) symmetric about 

the mid-plane, as shown in Figure 1. From the continuity 

equation for a flow between two fixed plates, as shown in 

figure 1, the governing equations are 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

(Since for 1-D flow, if we write Navier- Stokes 

equations in the x-direction, non-linear convective terms 

become zero) 

As v= 0, 
𝜕𝑢

𝜕𝑥
=  

𝑑𝑢

𝑑𝑥
= 0 

u= u(y) 

The x-moment equation:  

𝜌 (𝑢
𝜕𝑈

𝜕𝑥
+ 𝑣

𝜕𝑈

𝜕𝑦
) =  −

𝜕𝑃

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+ 

𝜕2𝑢

𝜕𝑦2
) 

𝜌(0) =  −
𝜕𝑃

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+  

𝜕2𝑢

𝜕𝑦2
) 

𝜕𝑃

𝜕𝑥
= 𝜇 (

𝜕2𝑢

𝜕𝑦2)        (1) 

 The y-momentum equation: 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) =  −

𝜕𝑃

𝜕𝑥
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+  

𝜕2𝑣

𝜕𝑦2
) 

𝜌(0 + 0) =  −
𝜕𝑃

𝜕𝑦
+ 𝜇 (0 +  0) 

𝜕𝑃

𝜕𝑦
= 0    (2) 

The z-momentum equation:  

𝜌 (𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑊 

𝜕𝑤

𝜕𝑧
)

=  −
𝜕𝑃

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+  

𝜕2𝑢

𝜕𝑦2
) 

𝜌(0 + 0 + 0) =  −
𝜕𝑃

𝜕𝑧
+ 𝜇 (0 +  0) 

𝜕𝑃

𝜕𝑧
= 0    (3) 

From equations 1, 2, and 3, it is obvious that  

𝜕𝑃

𝜕𝑥
= 𝜇 (

𝜕2𝑢

𝜕𝑦2
) ,

𝜕𝑃

𝜕𝑦
= 0, 𝑎𝑛𝑑 

𝜕𝑃

𝜕𝑧
= 0 

And, it is also clear that
𝜕𝑃

𝜕𝑥
= 𝜇 (

𝜕2𝑢

𝜕𝑦2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

The constant is expected to be negative because the 

pressure must decrease in the flow direction to 

overcome the resisting wall shear stress. Then applying 

the double integral to the above equation gives the 

velocity profile, therefore, 

𝑢 =  
1

𝜇 
(

𝜕𝑝

𝜕𝑥
)

𝑦2

2
+ 𝐶1 + 𝐶2   (4) 

Invocation of boundary conditions (at y= ±h; u=0) leads 

to the following conditions 

C1= 0 and C2=− (
𝜕𝑝

𝜕𝑥
)

ℎ2

2𝜇
  (5) 

u=− (
𝜕𝑝

𝜕𝑥
)

ℎ2

2𝜇
[1 −

𝑦2

ℎ2]  (6) 

Equation 6 is a parabola equation, and that’s why the 

velocity profile of Poiseulle’s flow looks like a parabola 

shape (see figure 1 for more details).    

 

Figure 1. Plane Hagen-Poiseuille flow between two flat 

plates, where ‘L (H)’ is the length (height) of the plate 

 

Couette flow is a viscous flow between two parallel 

plates separated vertically by a considerable distance 

(Munson et al. 2004). In general, the upper plate moves 

with some velocity while the bottom plate remains 

stationary. The Couette flow is two-dimensional in the 

xy plane. The flow between the two plates is driven by 

the shear stress exerted on the fluid by the moving 

plates. A velocity profile is, thus, formed on the flow, as 

depicted in the following figure. The schematic of 

Couette flow is presented in Figure 2.  



Proceedings on Engineering Sciences, Vol. 06, No. 3 (2024) 1309-1316, doi: 10.24874/PES.SI.24.03.007 

 1311 

 
Figure 2. Schematic of Couette flow between two plates 

 

As per as the fundamental governing equations of 

Couette flow are concerned, incompressible fluid 

dynamics problems are, in general, described by simple 

Navier- Stokes (NS equations).  

 

Let us assume both plates are infinitely large in z 

direction (see figure 2), and, hence, z dependence 

cannot be considered. Then, applying continuity 

equation, one can have  

𝜕𝑈

𝜕𝑥
+

∂V

∂y
+

𝜕𝑊

𝜕𝑧
= 0   (7) 

Navier- Stokes equation in x-direction,  

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
+ 𝑊

𝜕𝑈

𝜕𝑧
)                                      

=  −
𝜕𝑃

𝜕𝑥
+ 𝜌𝑔𝑥

+ 𝜇 (
𝜕2𝑈

𝜕𝑥2
+ 

𝜕2𝑈

𝜕𝑦2
+

𝜕2𝑈

𝜕𝑧2
)            

𝑑2𝑢

𝑑𝑦2 = 0    (8) 

Once we integrate the above second order differential 

equation (8), we get 

𝑑𝑢

𝑑𝑦
= 𝐶1 

Then, the second integration yields, the following 

equation, such as  

u(y) = C1y+C2    (9) 

Invocation of initial (y=0, u=0) and final (y=b, u= V) 

boundary conditions allow us to have C2 to be zero. If 

C2 value is zero (once implemented in equation 9), then 

C1value becomes V/b. And, finally we will have  

u(y)= V*y/b    (10) 

Equation 5 indicates that the relation between u and y is 

linear. The above equation can also be written as 

follows and it can be solved using MATLAB easily  

u/y=V/b     (11) 

To know the numerical approximation of the above 

equation, we used a second-order finite difference 

Crank-Nicolson Scheme in this study because that 

scheme is an implicit scheme and unconditionally stable 

and, hence, it is convergent. Usually, the Crank–

Nicolson scheme is the most accurate scheme for small-

time steps (Abdon Atangana, 2016). On the other hand, 

the explicit scheme is the least valid and can be 

unstable, but it is also the easiest to implement and the 

least numerically intensive. Using the Central difference 

method, we obtained the velocities at different nodes at 

different time intervals for several iterations. 

 

2. NEED OF THE STUDY AND 

ORGANIZATION OF THE ARTICLE 

 
Many analytical and numerical investigations have been 

carried out on various flows. However, they focus only 

on single entities (Fredsoe & Sumer, 1997; Benim et al. 

2007; Butt & Egbers 2013; Luckachan et al. 2022). 

Some studies deal only with laminar flow (Park & Kim, 

1998; Rajani et al. 2009; Bai & Li 2011; Ganie et al., 

2022) or turbulence (Ong et al. 2009; Cao & Tamura 

2008; Benim et al. 2007; Young & Ooi 2004). In this 

work, various flow fields including Poiseuille and 

Couette flows and their analytical and numerical 

solutions are discussed.  

 

Further, flow around a cylinder is studied and its analytical 

and numerical solutions are provided. Most importantly, a 

simple schematic model is proposed that helps to 

understand the existence of shear stresses and pressure 

gradient forces between two plates in opposite directions. 

As a result, a backflow regime is created within the stream, 

and this simple model may serve as a source of inspiration 

for other researchers to continue their work in this exciting 

field. Still, we believe there is a lot of room for these 

works, even though we are limiting ourselves to a few 

types of flows. The future scope of this work is detailed in 

the final section of this article. 

 

This paper consists of three sections. First, we introduce 

the importance of analytical and numerical solutions for 

various flows and the associated equations. Next, results 

and discussion are included, wherein we thoroughly 

discuss analytical and numerical solutions of various flows. 

Most importantly, a schematic model is proposed that 

helps us to explain the backflow regime in flow. Analytical 

and numerical flow solutions around a circular cylinder are 

discussed in the same section. The conclusion summarizes 

the results and it also contains future scope of these works, 

which follow the acknowledgments. 

 

3.0 RESULTS AND DISCUSSION 

 

3.1 Analytical and numerical solutions of plane 

Poiseuille flow– Finite difference method 
 

In the finite difference method, the derivatives will be 

approximated by finite differences on a grid. To solve a 

linear value problem of the form y11= p(x)y1+ q(x)y+ 

r(x), the following boundary conditions are considered 

such as y(x1)= alpha and y(x2)= beta.  



Kanuri et al., Numerical exploration of viscous flow regimes: Insights from Poiseuille, Couette and Taylor-Couette flows 

 1312 

The plane Poiseuille flow is solved using the finite 

difference method, for which we have considered the 

plate separation to be 0.1 and the viscosity µ = 1. The 

boundary conditions are: x1= 0; alpha= 0; and x2=0; 

beta= 0. The exact and the numerical (approximate) 

solutions of plane Poiseuille flow are almost 

converging, as shown in figure 3. 

  

 

Figure 3. Analytical and numerical solutions of plane 

Poiseuille flow 

 

3.2 COUETTE FLOW IN DIFFERENT 

SCENARIOS 

 

3.2.1 Couette flow under different pressure 

gradient conditions 
 

Couette flow is used to describe shear-driven motion in 

which the fluid flow is induced by the motion of one of 

the plates in the channel. As for the technical 

application of this flow, it is used in fluidics, geophysics 

and astrophysics. Couette flow theory can be used to 

measure viscosity and estimate drag in many 

applications. 

 

We first investigated the behavior of the velocity profile 

at different pressure gradients. The dimensionless 

pressure gradients considered here range from -5 to +5 

(11 in total) and the resulting velocity profiles are 

shown in the figure below. Figure 4 shows Couette 

velocity profiles under different pressure gradients. 

From this figure, it is clear that the velocity profile 

increases with favorable dimensionless pressure 

gradient, similar to the findings of Kuiry and Bahadur 

(2015) and Muhim Chutia (2018), and references 

therein. 

 

We also see that the numerical solution converges to the 

exact solution when the pressure gradient is zero (plane 

Couette flow). It is also clear that the analytical solution 

decreases as a linear change between the bottom and top 

walls when the pressure drop goes to zero. It is also 

clear that the velocity profile is linear at steady state 

(see velocity profile with zero pressure gradient in 

Figure 4). 

 

Figure 4. Couette flow velocity profiles under 

favourable pressure gradient (
∆𝐩

∆𝐱
=  −𝟓, −𝟒, −𝟑,

−𝟐, −𝟏),   zero pressure gradient (
∆𝒑

∆𝒙
=  𝟎), 𝐚𝐧𝐝 adverse 

pressure gradient (
∆𝐩

∆𝐱
=  𝟏, 𝟐, 𝟑, 𝟒, 𝟓) conditions 

3.2.2 The top plate is moving while the bottom 

plate is held constant scenario 

This section shows the Couette velocity profile for a 

grid point of 101 and a top velocity of 1 m/s. Figure 5 

shows the velocity profile from 0 to 25 seconds. The 

figure shows that the analytical solution reaches 

steady state over time as the number of iterations 

increases. To be precise, it took about 25 seconds to 

go from transient to steady state. Moreover, the 

profile appeared to shift towards steady state as the 

truncation error decreased over time. It has been 

reported that for an arbitrary Reynolds number of 

2000 and an associated error of 0.00458, it took 

nearly 1000 seconds to reach steady state from 

transient state (Santos & Chaves, 2019). 

 

 

Figure 5. Couette flow when the upper plate is moving  
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3.2.3 The top plate is held constant while the 

bottom plate is moving scenario  
 

To verify the effect of the drag force on the liquid from 

the lower plate, the upper plate remained constant while 

the lower plate moved at a constant velocity, simulating 

the Couette flow in different environments. Figure 6 

shows velocity profiles at various times from 0 to 25 

seconds. It is interesting that the direction of flow is 

reversed compared to Figure 5, but this is mainly due to 

liquid resistance through the bottom plate. Interestingly, 

similar to the velocity profile in Figure 5, it also took 

almost 25 seconds to reach steady state from transient. 

 

 

Figure 6. Couette flow when the bottom plate is moving   

 

3.2.4 The top plate is moving and the bottom 

plate is held constant under adverse 

pressure gradient condition scenario 
  

Here a special case is shown where the top plate moves at 

80 m/s and the bottom plate remains constant under 

adverse pressure gradient conditions. In this case, it is 

reasonable to assume that the velocity profile for this 

scenario exhibits a line similar to the trend shown in Figure 

6. However, due to the presence of an adverse pressure 

gradients, the flow tends to reverse starting at the bottom 

plate, and this reverse flow condition is known as backflow 

regime (BFR) or reverse flow reverse (RFR) (Kundu et al., 

2016). Figure 7 shows a parabolic velocity profile from the 

beginning of the top plate to near the bottom plate. It is also 

possible to see the BFR from this figure.   

 

 

Figure 7. Couette flow under adverse pressure gradients  

In such circumstances, there is a competition between 

the shear stress force (diffusive momentum flux) 

exerted by the moving plate (which tries to move the 

fluid from left to the right direction) and pressure 

gradient force (which tries to move the fluid from right 

to left), as shown in the following figure. Figure 8 

presents a simple schematic model indicating the 

presence of shear stress and pressure gradient forces on 

fluid. Further, if the shear stress force completely 

dominates the pressure gradient force, the velocity 

profile becomes parabolic, similar to Kundu et al. 

(2016, see their Figure 9.4a) results.  

 

The schematic model presented in figure 8 shows the 

moderate dominance of shear stress forces over pressure 

gradient forces. That’s why BFR has occupied nearly 

33% of the entire region, as seen in Figure 8. The 

second option is that if the pressure gradient force 

dominates the shear stress, one would expect a reverse 

flow, which can also be found in the research by Kundu 

et al. (2016, see their Figure 9.4b). Last but not least, 

when the pressure gradient becomes zero, the velocity 

profiles would look as in Figure 2 of this article. This 

similar velocity profile could also be found in the 

research by Kundu et al. (2016, see their Figure 9.4c).     

       

 

Figure 8. A simple schematic model helps us 

understand the presence of shear stress and pressure 

gradient forces between two plates, wherein black 

arrows (left to right) represent shear stress forces. In 

contrast, red arrows (right to left) represent pressure 

gradient forces 

 

3.3 Flows around a circular cylinder 
 

Fluid flow around circular cross-sections is recognized as 

an important problem in fluid dynamics. Moreover, this is 

an exciting aspect of research that has attracted researchers 

for several years (Yuce & Kareem, 2016). Several 

engineering applications, including bridge piers, offshore 

structures, and pipelines can, effectively, be modelled as 

cylinders. The flow around cylinders exhibits many 

important physical phenomena, such as flow separation, 

turbulence, and vortex shedding (Yuce & Kareem, 2016, 

and reference therein). The flow over a circular cylinder is 

the combination of uniform flow and a doublet, according 

to Ngo and Gramol (2004).  
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The superimposed stream function and velocity 

potential are given by 

Ψ= ΨUniform flow + Ψ doublet =U r sinϴ - K sin ϴ/r 

and 

Ф= ФUniform flow + Фdoublet = U r cos ϴ + K cosϴ/r 

Since the streamline that passes through the stagnation 

point has a value of zero (see, figure 10 for further 

clarification), the stream function on the surface of the 

cylinder of radius ‘a’ is then given by 

Ψ= U a sin ϴ - K sin ϴ/a =0 

This gives the strength of the doublet as 

K= U a2 

The stream function and velocity potential for flow past 

a fixed circular cylinder become 

Ψ= U r(1-(a/r)2) sin ϴ 

and  

Ф = U r(1+ (a/r)2) cos ϴ 

Then, both velocity components (radial and tangential) 

can be written as  

Vr=
1

𝑟

𝜕Ψ

𝜕ϴ
= 𝑈 [1 −  

𝑎2

𝑟
] cos ϴ 

Vϴ=−
𝜕Ψ

𝜕r
= −𝑈 [1 +  

𝑎2

𝑟
] sin ϴ 

 

Figure 9 shows both analytical and numerical solutions 

of velocities over the circular cylinder, from 0 to 360 

degrees. The discrepancy between the velocities 

calculated numerically and analytically is extreme at ~ 

90 degrees and ~ 270 degrees, respectively. On the other 

hand, most surfaces show better agreement with 

sufficient accuracy. This observed marginal discrepancy 

may be reduced by modifying the default equation 

solver settings (for example, by tightening the 

convergence criteria and increasing the number of 

iterations), and viscous effects can also affect this 

discrepency (Ngo & Gramol, 2004). Overall, the 

analytical and numerical showed moderate to reasonable 

agreement. 

 

 

Figure 9. Shows both analytical and numerical solutions of 

velocities over the circular cylinder, from 0 to 360 degrees 

Figure 10 shows velocity vectors superimposed on the 

velocity magnitudes around the circular cylinder. Here, 

warmer colors represent faster velocities. The cylinder 

shape is found to have significantly affected the flow 

field (Yuce & Kareem, 2016) and the flow smoothly 

divides and reunites around the cylinder. This case falls 

into the low speed category because at low speed the 

smooth fluid flow becomes unstable and at high speed it 

becomes turbulent.  

 

 

Figure 10. Velocity magnitude and vectors around a 

circular cylinder 

 

It is obvious that green represents the free stream velocity, 

which is the velocity that is far from the cylinder. Fluid 

elements approaching the cylinder directly (at the equator) 

slow down once they are sufficiently close (shifting to blue 

color). The fluid element on the upstream side of the 

cylinder’s surface stops moving, or its velocity decreases to 

zero. It is referred to as a stagnation point. The magnitude 

of the fluid constituents’ velocities increases as they travel 

above or below the cylinder (shifting to red). Two times as 

fast as the free stream is the velocity at the top and bottom 

of the cylinder. Tangential or parallel to the cylindrical 

surface, velocity exists along the cylinder surface.   

 

4.CONCLUSION AND FUTURE SCOPE  
 

This work presents analytical and numerical solutions 

for various flows. The salient features of this study are 

as follows:  

a) Exact and numerical solutions of planar 

Poiseuille flow converge without contradiction. 

b) The fluid velocity increases with favorable 

dimensionless pressure gradient. 

c) Couette flows simulated in different scenarios 

yielded exciting results.  

d) If the pressure drop goes to zero, the analytical 

solution will decrease as a linear change 

between the bottom wall and the top wall. If 

the bottom plate is held constant, the flow will 

be in the opposite direction, mainly due to the 

drag force on the fluid by the bottom plate. 

e) The flow forms a backflow regime when the 

upper plate moves under adverse/unfavorable 
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pressure gradient conditions. To describe the 

backflow regime, we present a simple 

schematic model that helps to understand the 

competition between momentum diffusion and 

pressure gradient forces as to develop a 

backflow regime. Analytical and numerical 

solutions for flow over a cylinder are shown. 

f) We explained the reasons for marginal 

discrepancy (at only few places) between. 

g) Analytical and numerical solutions. Using the 

velocity magnitude and velocity vector plot, we 

observe that the shape of the cylinder has a large 

effect on the flow field and the velocity at the top 

and bottom of the cylinder being twice that of the 

free stream (velocity away from the cylinder). 

 

As far as the future scope of these research works are 

concerned, the flow field around a cylinder of Reynolds 

number (Re) ranges from a minimum value (e.g. 10 – 

laminar flow) to a higher value (5 × 106 – turbulent 

flow) will be studied. We also focus on examining both 

analytical and numerical studies such as flows in infinite 

parallel plates, vertically falling films, flow in rotating 

tubes, and boundary layers. This will give you more 

insight into the flow. In addition to the Reynolds 

number scenario, the flow direction also has a 

significant impact on the flow dynamics around the 

cylinder. Since the direction of the free jet can be 

changed (Zhang et al., 2019), the effect of angle of 

attack on the flow will be investigated as part of future 

research. 
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