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A B S T R A C T 

In this research paper, we present an innovative investigation into a novel two 

parameter semicircular distribution, termed the “stereographic semicircular 

Erlang distribution,” which is constructed using the inverse stereographic 

projection (ISP) technique. This distribution serves as advancement over the 

existing stereographic semicircular exponential distribution. We delve into 

essential mathematical properties of this distribution and execute a simulation 

study to estimate its parameter values. Furthermore, we perform an empirical 

analysis utilizing a dataset comprising posterior corneal curvature 

measurements extracted from the eyes of 23 patients. This empirical 

assessment is designed to evaluate the adaptability and potential applicability 

of the proposed distribution within the realm of ophthalmology in medical 

science.   

© 2024 Published by Faculty of Engineering  

 

 

 

 

1. INTRODUCTION 
 

Circular data find widespread applications across 

various disciplines such as geology, meteorology, 

biology, earth science, political science, economics, and 

computer science, among others. Full circular models 

are extensively documented in seminal texts, including 

Fisher (1993), Mardia and Jupp (2000), and 

Jammalamadaka and Sen Gupta (2001). Nevertheless, it 

is essential to recognize that modeling circular data 

across the entire circle may not always be necessary, as 

acknowledged by Jones (1968), Guardiola (2004), 

Byoung et al. (2008), Phani et al. (2013, 2016, 2017, 

2017a, 2019, 2020), and Girija et al. (2013). 

Noteworthy contributions have been made by Dattatreya 

Rao et al. (2007), Phani et al. (2011, 2012, 2023), 

Sakthivel et al. (2022), Oleiwi et al. (2022), and Salah 

Hamza Abid (2022, 2023) have introduced various 

circular and semicircular models through the application 

of inverse stereographic projection, a technique that 

maps point from the real line to the unit circle based on 

known probability distributions on real line. Further 

enriching this field Pramesti et al. (2015, 2016, 2017, 

and 2018) have explored and analyzed novel 

semicircular and circular distributions. Recent research 

by Rambli et al. (2015), Ali (2017) and Iftikhar et al. 
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(2022) has introduced half circular distributions and 

discussed their applicability to real-world data sets. 

In this article, we initiate the development of a novel 

semicircular model, herein denominated as the 

“stereographic semicircular Erlang distribution.” This 

model is constructed by applying the inverse 

stereographic projection technique to the Erlang 

distribution and representing a special case of the 

gamma distribution. We furnish precise mathematical 

representations for trigonometric moments using 

Meijer's G-function. The structure of the article unfolds 

as follows: In the second section, we introduce the 

stereographic semicircular Erlang distribution and 

present key mathematical properties, including 

trigonometric moments, cumulative distribution 

function, survival function, and hazard rate function, 

accompanied by illustrative plots. Section 3 outlines the 

method of maximum likelihood estimation, followed by 

a simulation study in section 4 to assess the model’s 

parameter consistency. Section 5 scrutinizes the 

applicability of the new model to real-world datasets, 

offering comparisons with other competitive models. 

Finally, in section 6, we summarize our findings and 

conclude this piece of work. 

 

2. DERIVATION OF THE PROPOSED 

MODEL 

 

The Erlang distribution, originally introduced by Erlang 

(1909), is a particular instance of the gamma 

distribution, characterized by a positive integer value for 

the shape parameter. It is a continuous probability 

distribution with support on  0, , and has  wide 

range of applications in fields like traffic engineering , 

stochastic processes and biomathematics, mainly due to 

its relative to the exponential distribution. 

 

Here we recall the definition of Erlang distribution. 

Definition 2.1    

 

A continuous random variable X  is considered to 

adhere to the Erlang distribution with a shape parameter 

k (a positive integer) and a scale parameter 0   if its 

probability density and distribution functions are 

defined as follows: 
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, where  .  is the lower 

incomplete gamma function.           (2) 

 

Definition 2.2     
 

A random variable SC  defined on the semicircle is 

characterized as following the stereographic 

semicircular Erlang distribution with a shape parameter 

k  (a positive integer) and a scale parameter  , denoted 

by SSCEr  ,k  . This distribution is specified by its 

probability density and distribution functions, given as 

follows:  
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 0,  , 0  , and k  .             (4) 

 

 
 

Figure 1. Plots of the probability density function (left) and cumulative distribution function (right) for various 

parameter values
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Figure 2. Plots displaying the probability density function (left) and cumulative distribution function (right) for diverse 

parameter values, represented in a circular format 

 

 

Survival and Hazard Function: The survival function 

of SSCEr  ,k   is given by   
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                  (5) 

The hazard rate function and the reversed hazard rate 

function of the SSCEr  ,k   are given respectively by   
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Figure 3. Survival function (left) and hazard rate function (right) plots depicting varying parameter values 
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Quantile Function:  The quantile function for the 

SSCEr  ,k   distribution is given by  
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where 0 1u                                              (8) 

 

and  1 .,. 
 is the inverse incomplete gamma function. 

    

Median: The median of SSCEr  ,k   will be given by  
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Trigonometric moments 

 

Under the pdf of stereographic semicircular Erlang 

distribution the first two  

 p cos pE   and  p sin p ,E  p 1,2. are 

given as follows:  
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3. MAXIMUM LIKELIHOOD ESTIMATION 
 

In this section, we have introduced the maximum 

likelihood estimation method, which is utilized for 

parameter estimation in the Stereographic Semicircular 

Erlang (SSCEr) distribution. Assuming that a random 

sample 1 2 3, , ,..., n    of size  n  is drawn from 

SSCEr, the log-likelihood function can be expressed as 

follows: 
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4. SIMULATION 
 

In this part, the performance of  is evaluated by 

conduction Monte Carlo simulation study. To carry out 

this study, we use the inverse distribution function 

approach (i.e., quantile function) for obtaining random 

numbers from the SSCEr  ,k  with pdf and cdf given 

in Eq. (2.3) and (2.4) respectively. For each simulation, 

10,000 samples of sizes 

50,75,100,300,500, and750n   were generated 

for different values of   and given k. For every 

individual sample, we use a self-programmed R script to 

calculate the Maximum Likelihood Estimators (MLEs), 

average bias, mean square error (MSE), and mean 

relative error (MRE). 
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Table 1. Average MLE, absolute bias, MSE, and MRE of the simulated estimate of   for a given value of k  

 1k   

 0.75   2   

Sample 

size n  MLE   Bias  MSE  MRE  MLE   Bias  MSE  MRE  

50 0.76901 0.08783 0.01278 0.11710 2.05177 0.24247 0.09549 0.12123 

75 0.76765 0.07406 0.00900 0.09874 2.03321 0.18947 0.06012 0.09474 

300 0.75341 0.03477 0.00189 0.04635 2.01050 0.09483 0.01404 0.04742 

500 0.75208 0.02678 0.00114 0.03570 2.00503 0.07052 0.00809 0.03526 

750 0.75229 0.02132 0.00071 0.02842 2.00361 0.05735 0.00510 0.02868 

 3k   

 3.5   4.75   

Sample 

size n  MLE   Bias  MSE  MRE  MLE   Bias  MSE  MRE  

50 3.53760 0.23908 0.09295 0.06831 4.78091 0.32956 0.17358 0.06938 

75 3.52134 0.18366 0.05525 0.05247 4.75693 0.25325 0.10046 0.05332 

300 3.49788 0.09134 0.01318 0.02610 4.75270 0.12927 0.02575 0.02721 

500 3.49956 0.07265 0.00830 0.02076 4.75288 0.10219 0.01624 0.02151 

750 3.49801 0.05799 0.00536 0.01657 4.75367 0.08002 0.01001 0.01685 

 5k   

 5.25   6   

Sample 

size n  
MLE   Bias  MSE  MRE  MLE   Bias  MSE  MRE  

50 5.27793 0.26685 0.11264 0.05086 6.02896 0.30118 0.14461 0.05020 

75 5.25691 0.21853 0.07441 0.04163 6.00215 0.24376 0.09248 0.04063 

300 5.25302 0.10643 0.01804 0.02027 6.00073 0.12317 0.02388 0.02053 

500 5.25798 0.08382 0.01120 0.01596 6.01385 0.09423 0.01373 0.01571 

750 5.25043 0.07152 0.00792 0.01362 5.99925 0.08025 0.00996 0.01338 

 
Based on the findings from the simulated results 

displayed in Table 1, it is apparent that the average 

bias, mean square error (MSE), and mean relative 

error (MRE) values of the estimator tend to converge 

towards zero as the sample size increases. 

Consequently, the estimator for the SSCEr 

distribution demonstrates precision, accuracy, and 

stability, thereby establishing its consistency. 

 

5. APPLICATION 
 

To show the usefulness of proposed model, we consider 

real data set obtained from a glaucoma clinic at the 

University of Malaya Medical centre, Malaysia. This 

data consists of the images of the posterior segment of 

the eyes of 23 patients. Recently, Iftikhar et al. (2022),  

Maruthan et al. (2022), Rambli et al. (2019), and Ali 

(2017) used this data to check the applicability of their 

models. 

 
We compare the performance of stereographic 

semicircular Erlang distribution with performance of 

SSCEx. (Phani et al. (2013)), hc-BurrIII, hc-GIW, hc-

log logistic, and hc-gamma (Ali 2017) distributions 

using the Kolmogorov-Smirnov(KS) statistic, the 

Akaike information criterion(AIC), and Bayesian 

information criterion(BIC) to find out the best-fitting 

distribution. All the required statistics are computed 

and present in Table2 and 3.  

 

Data set: 

1.60 1.21 1.46 2.10  1.40 1.82 1.57 1.56 1.85 0.60 1.70  1.97  1.47

 1.74 1.67 1.38 0.53 1.69 1.63 1.56 1.81 2.09 2.29 
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Figure 4. Rose diagram of eye data set (left) and Circular plot of eye data set (right) 

 

Table 2. MLEs and their standard errors for eye data set 

Model  1 .S E   2 .S E   3 .S E  

SSCEr 5.42656(0.46194) 5 - 

SSCEx 0.90449(0.18859) - - 

hc-BurrIII 1.00047(0.22975) 4.28673(0.85739) - 

hc-GIW 0.31027(0.10242) 1.70011(0.23619) 4.80355(2.0366) 

hc-log logistic 1.06425(0.08438) 4.38493(0.80058) - 

hc-gamma 5.72203(1.63874) 0.19321(0.05783) - 

 

Table 3. Summary of statistics 

Model LL AIC BIC KS(p-value) 

SSCEr -11.10115 24.2023 25.3370 0.1630(0.5741) 

SSCEx -22.91177 47.8235 48.9590 0.3955(0.0015) 

hc-BurrIII -11.37239 26.7449 29.0158 0.1839(0.4180) 

hc-GIW -18.77315 43.5463 46.9528 0.2719(0.0666) 

hc-log logistic -11.07212 26.1443 28.4152 0.1165(0.9136) 

hc-gamma -11.08750 26.1746 28.4456 0.1698(0.5208) 

 
The higher value of the log-likelihood statistic, along 

with the smaller values of AIC and BIC, unequivocally 

indicates that the stereographic semicircular Erlang 

distribution provides a better fit to the dataset compare 

to the other competent distribution. 

 

Figure 5. (a) Fitted densities of the SSCEr. SSCEx. Hc -Burr III, hc-GIW, hc-log logistic, and hc-gamma models to eye 

data set. (b) Fitted distribution function of the SSCEr., SSCEx., hc-BurrIII, hc-GIW, hc-log logistic, and hc-gamma 

models to eye data set 
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Figure 6. The empirical pdf (top left panel), cdf (bottom left panel), Q-Q (top right panel), and P-P (bottom right panel) 

plots for eye data set 

 

All the computation is evaluated by using FitdistrPlus, 

Adequacy Model (Pedro Rafael et al. 2019) 

 
6. CONCLUSION 
 

In this research paper, we introduce the stereographic 

semicircular Erlang distribution, a novel two-parameter 

distribution created via the inverse stereographic 

projection (ISP) technique, building upon the existing 

stereographic semicircular exponential distribution. We 

meticulously explore its mathematical properties, 

conduct simulations to estimate parameters, and 

empirically analyze data from posterior corneal 

curvature measurements of 23 patients’ eyes. This 

empirical investigation serves to assess the distribution's 

adaptability and practical utility. Our findings 

emphasize the distribution's promise in statistical 

representation, highlighting its potential for diverse 

applications and contributing significantly to advancing 

statistical modeling methodologies. 
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