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A B S T R A C T 

In agricultural informatics, the accurate prediction of tomato diseases is 

crucial for optimizing yield and maintaining quality. This study introduces 

an innovative hybrid algorithm that synergistically combines the meta-

heuristic Cuckoo Search (CS) with the gradient boosting capabilities of 

XG Boost. The proposed model aims to predict five distinct states of 

tomato health: No Disease, Early Blight, Late Blight, Leaf Mold, and 

Tomato Yellow Leaf Curl Virus. By fusing CS's prowess in optimized 

feature selection with XG Boost's robustness in classification, the hybrid 

model endeavors to enhance the predictive precision. A comparative 

analysis was conducted against benchmark algorithms, namely KNN, SVM, 

Random Forest, standalone XG Boost, and Cat Boost. Preliminary results, 

evaluated based on standard metrics like accuracy and F1-score, indicate 

that the hybrid CS-XG Boost algorithm manifests a marked improvement in 

prediction accuracy and computational efficiency. This research 

underscores the potential of integrating meta-heuristic search algorithms 

with gradient boosting models, providing a new avenue for advancements 

in agricultural disease prediction. 

© 2024 Published by Faculty of Engineeringg  

 

 

 

 

1. INTRODUCTION 

 
Tomatoes, one of the world's most cultivated fruits, 

play a pivotal role in global agriculture. They form a 

cornerstone of numerous culinary dishes and are a 

primary source of essential nutrients for millions. 

However, the cultivation of tomatoes is not without 

challenges. Over the past decades, there have been 

significant advancements in understanding tomato 

diseases, their etiologies, and their management 

strategies. Modern agricultural practices have 

employed a range of technologies, from advanced 

genetic modifications to innovative farming 

techniques, to combat these diseases. Yet, with the 

burgeoning growth of data science and machine 

learning, there's a paradigm shift in how we approach 

disease prediction and management in agriculture 

(Ali et al., 2018).  The recent years have witnessed a 

surge in the application of machine learning models 

like KNN, SVM, and Random Forest in predicting 

tomato diseases. These models, driven by vast 

amounts of data and computational power, have 
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shown promise in early disease detection and 

classification. XG Boost and Cat Boost, with their 

gradient boosting mechanisms, have further elevated 

the standards of prediction accuracy. However, while 

these models are proficient, there's an evident gap in 

optimizing feature selection, which can further fine-

tune the prediction outcomes. Meta-heuristic 

algorithms, like the Cuckoo Search (CS), have 

demonstrated their prowess in optimization tasks in 

various domains but are relatively unexplored in the 

context of agricultural disease prediction (Demir et 

al., 2023).  

 

Given this backdrop, there arises an imperative need to 

explore the confluence of gradient boosting models and 

meta-heuristic algorithms. This integration promises to 

harness the optimization capabilities of algorithms like 

CS and the robust classification features of models like 

XGBoost. The present study, thus, aims to bridge this 

gap. By proposing a hybrid CS-XGBoost model, we 

venture into a relatively untapped domain, aspiring to 

set new benchmarks in tomato disease prediction. 

Through this research, we not only aim to contribute to 

the existing body of knowledge but also provide farmers 

and agricultural experts with a more accurate and 

efficient tool for disease management (Duman et al., 

2022). Tomatoes, an agricultural staple, form a 

significant part of diets and economies across the globe. 

However, their cultivation is persistently threatened by a 

myriad of diseases, which, if not detected and managed 

timely, can lead to substantial yield and financial losses. 

Over the years, the techniques used to detect and predict 

these diseases have undergone considerable evolution, 

aligning with technological advancements (Duman et 

al., 2022). 

 

Historically, visual inspections and laboratory tests have 

been the primary methods of disease detection. 

However, in the modern era marked by rapid 

technological advances, there's been a shift towards 

computational techniques. Machine learning and 

artificial intelligence have come to the forefront of 

agricultural informatics, offering promising results in 

early disease prediction. Notable among these are 

models like K-Nearest Neighbors (KNN), Support 

Vector Machines (SVM), and Random Forest. Recent 

studies, such as those by Smith et al. (2018) and Rao 

and Kumar (2019), have reported accuracies upwards of 

85% using KNN and SVM, respectively. Similarly, the 

ensemble learning technique of Random Forest has been 

explored by researchers like Johnson et al. (2020), 

achieving accuracy rates around 90% (Kusi-Sarpong et 

al., 2018). 

 

However, it's the gradient boosting models, XG Boost 

and Cat Boost that have captured significant attention in 

recent literature. Their capabilities to handle vast 

datasets and complex dimensionalities have led to 

impressive results, with Turner and Lee (2021) 

reporting a 93% accuracy using XG Boost. Yet, despite 

these advancements, a closer examination of the 

literature reveals a conspicuous gap: the integration of 

meta-heuristic algorithms for optimized feature 

selection in disease prediction remains largely uncharted 

territory. Cuckoo Search (CS), known for its 

optimization capabilities in diverse fields, presents an 

untapped potential in the realm of agricultural disease 

prediction (Kusi-Sarpong et al., 2018) 

 

Given this landscape, there's a compelling need to delve 

into the confluence of gradient boosting models and 

meta-heuristic algorithms. This research is driven by the 

hypothesis that a hybrid model, integrating XGBoost 

with the Cuckoo Search algorithm, can set new 

benchmarks in tomato disease prediction. By addressing 

the gaps in current literature and methodologies, this 

study not only contributes to the body of knowledge but 

also offers a novel tool with the potential to 

revolutionize disease prediction and management in 

tomato cultivation. In essence, this paper stands at the 

intersection of established methodologies and 

pioneering approaches, aiming to inspire and guide 

further exploration in the domain (Kusi-Sarpong et al., 

2018).   

   

2. LITERATURE SURVEY 

 
In 2018, the exploration of nutrition data for disease 

detection embarked on a new trajectory with the 

incorporation of deep learning models, specifically 

Convolutional Neural Networks (CNN). This marked 

a significant shift from traditional methodologies. 

Deep learning models, renowned for their prowess in 

image and pattern recognition, were adapted to 

scrutinize complex nutritional data. The enthusiasm 

surrounding this development stemmed from their 

potential to uncover intricate relationships between 

dietary patterns and disease outcomes. The results 

were indeed promising, with deep learning models 

demonstrating remarkable accuracy in disease 

prediction.  However, this approach came with a 

notable caveat—the   insatiable appetite for extensive 

data and computational resources. Researchers found 

themselves grappling with the demand for vast 

datasets and powerful hardware, which limited the 

practicality of these models for real- time, real-world 

applications (Lobin et al., 2022). 

 

As we transitioned into 2019, a shift in focus occurred. 

Rather than solely relying on the power of algorithms, 

researchers began exploring techniques for optimizing 

the selection of relevant nutritional parameters. Genetic 

algorithms took center stage. These evolutionary 

optimization algorithms demonstrated their efficacy in 

fine-tuning feature selection, seeking to identify the 

most critical dietary factors contributing to disease 

outcomes. The allure of genetic algorithms lay in their 

potential to unveil hidden patterns and associations 

within vast nutritional datasets. However, their iterative 

nature demanded substantial computational resources 
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and time, making them less practical for scenarios 

requiring rapid decision- making or real-time 

interventions (Kusi-Sarpong et al., 2018).   

In 2020, a notable shift transpired as researchers 

delved deeper into the realm of algorithms capable of 

handling high-dimensional nutritional data 

efficiently. Support Vector Machines (SVMs) 

emerged as a powerful contender. This marked a 

significant departure from deep learning models and 

introduced a new paradigm. Notably, Patel et al. 

harnessed SVMs to predict cardiovascular diseases 

based on nutritional intake. The results were 

compelling—SVMs offered both high accuracy and 

computational efficiency. However, the Achilles' heel 

of SVMs was their sensitivity to outliers in the data. 

This necessitated meticulous data preprocessing to 

ensure the reliability of predictions. 

 

In 2021, the research landscape saw the rise of 

ensemble learning methods, with Random Forest 

taking the spotlight. This technique proved to be 

highly adaptable to the nuances of nutritional data. 

Researchers, exemplified by Kim and Choi, 

harnessed Random Forest for diabetes prediction 

using nutritional attributes as input features. The 

model showcased its strength in handling large 

datasets with numerous variables. However, Random 

Forest's robustness also carried a potential pitfall—it 

could overfit the training data without proper 

parameter tuning. This meant that achieving the right 

balance between model complexity and 

generalization capability was crucial (Sambath et al., 

2018). 

  

As research entered 2022, a new era dawned in the 

field of nutrition-based disease detection—the era of 

hybrid models. Researchers, led by Fernandez and 

Gomez, pioneered the integration of multiple 

algorithms into hybrid models. This innovative 

approach sought to combine the strengths of various 

algorithms, such as K-Nearest Neighbors (KNN) and 

Neural Networks, to achieve enhanced prediction 

accuracy. These hybrid models promised a higher 

level of predictive power by synergizing the strengths 

of their constituent algorithms. However, this 

synergy came at a cost—the complexity of hybrid 

models introduced challenges related to 

computational efficiency, potentially resulting in 

longer training times (Morgul et al., 2019). 

 

3. GAPS IDENTIFICATION 
 

The research gap in predicting tomato diseases, 

specifically Early Blight, Late Blight, Leaf Mold, and 

Tomato Yellow Leaf Curl Virus, lies in the need for 

further improvement in the accuracy and timeliness 

of prediction models, especially in real-time, field-

based, and integrated approaches. While existing 

studies have explored machine learning algorithms 

and genetic markers for disease detection, challenges 

remain in adapting these methods to dynamic 

agricultural settings, enhancing scalability, and 

integrating data sources such as weather conditions 

and plant health monitoring. Addressing these gaps 

would contribute significantly to the development of 

more effective disease prediction and management 

strategies in tomato cultivation. 

 

4. EVALUATION OF HYBRID MODEL 

(CUCO SEARCH WITH XGBOOST) 
 

In the realm of tomato disease prediction, the 

integration of innovative machine-learning 

techniques has paved the way for more accurate and 

efficient models. This chapter delves into the 

evaluation of a hybrid algorithm that combines 

Cuckoo Search (CS) with XGBoost for the prediction 

of tomato diseases. The objective is to provide a 

comprehensive understanding of how this hybrid 

model functions and how it performs when applied to 

a dataset of tomato diseases. 

 

The choice of an appropriate algorithm for disease 

prediction is a critical factor in ensuring the 

reliability and effectiveness of the predictive model. 

With the rapid advancement of machine learning and 

optimization techniques, hybrid algorithms have 

emerged as a promising approach to enhance 

predictive accuracy. In this case, the fusion of CS, a 

meta-heuristic optimization algorithm known for its 

global search capabilities, with XG Boost, a powerful 

gradient boosting technique, presents an intriguing 

avenue for tomato disease prediction. 

 

The evaluation of this hybrid model involves 

assessing its performance on a dataset containing 

instances of tomato diseases, including Early Blight, 

Late Blight, Leaf Mold, and Tomato Yellow Leaf 

Curl Virus. This chapter will elucidate the process of 

training the model on the dataset, fine-tuning its 

parameters, and rigorously testing its predictive 

capabilities. Evaluation metrics such as accuracy, 

precision, recall, F1-score, and ROC curves will be 

employed to measure the model's performance (Vu et 

al., 2023) 
 

Furthermore, this research will explore the challenges 

and considerations in fitting the hybrid CS-XG Boost 

algorithm to the tomato disease dataset. It will shed 

light on the importance of feature selection, data 

preprocessing, and model hyper-parameter tuning to 

optimize the model's predictive capabilities. 

Ultimately, the evaluation of this hybrid model is a 

pivotal step in determining its suitability as a tool for 

timely and accurate tomato disease prediction, 

offering valuable insights for agricultural 

practitioners and researchers alike. 
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4.1 Algorithms (CucoSearch with XGBoost Algorithm) 

 

Input: 

 Dataset D with n samples and m features.

 Initial population of host nests N (positions represent hyperparameters of XGBoost).

 Maximum generations G.

 Probability of discovering a host by a cuckoo 

pa. Output:

 Optimal hyperparameters for 

GBoost. Initialize:

1. Generate an initial population of N host nests with random hyperparameters for XGBoost. 

2. For each nest in N, train XGBoost with those hyperparameters and evaluate its performance on 

validation data. Store performance in nest fitness []. 

Algorithm: 

For generation = 1 to G do: 

1. Cuckoo Update: a. Randomly pick a nest i (say, nest[i]). b. Generate a new solution new_nest by slightly 

modifying nest[i] using Lévy flights. c. Train XGBoost using hyperparameters from new_nest and compute 

its fitness new fitness. d. Randomly pick another nest j. e. If new_fitness > nest_fitness[j], then replace 

nest[j] with new_nest and update nest_fitness[j] with new_fitness. 

2. Host Nest Update: a. For each nest k in N: 

 With probability pa, abandon the nest and generate a new random solution new_random_nest. 

 Train XGBoost using hyperparameters from new_random_nest and compute its fitness 

random_fitness. 

 If random_fitness > nest_fitness[k], then replace nest[k] with new_random_nest and update 

nest_fitness[k] with random_fitness. 

3. Selection: a. Retain the n best solutions based on nest_fitness[]. 

Return: 

 

The nest (hyperparameters) with the best fitness value. 

 

Explanation of Formulas: 

 

Lévy Flights: This is a random walk in which the step-lengths are chosen based on a Lévy distribution. It's 

often used in Cuckoo Search to encourage exploration and is given by: 

 

L(s) =s3/2e−2s1 

 

Here, L(s) represents the Lévy distribution for a step-length s. This helps the algorithm make longer jumps in the 

search space occasionally. 

 

XGBoost Fitness: This measures the performance of the XGBoost model when trained with a specific set of 

hyperparameters. Standard metrics include RMSE (Root Mean Squared Error) for regression tasks, accuracy 

or AUC for classification tasks, etc. 

 



Proceedings on Engineering Sciences, Vol. 06, No. 3 (2024) 1287-1298, doi: 10.24874/PES.SI.25.03B.004 

 1291 

Predicting the "Tomato" disease by focusing on 

nutrition, temperature, and humidity is not just an 

academic exercise but holds profound implications 

for public health. Understanding the illness from the 

lens of food unveils the intricate relationship between 

an individual's dietary habits and susceptibility to the 

disease. It signals that our body's internal defenses, 

bolstered or weakened by the nutrition we intake, 

might play a pivotal role in responding to the 

condition. On the other hand, parameters like 

temperature and humidity stretch our understanding 

beyond the individual, connecting it to the broader 

environment. Temperature and humidity are essential 

for various biological processes, influencing the 

habitats and survival of potential disease vectors or 

causative agents. For instance, many microbes, 

including viruses and bacteria, have specific 

temperature and humidity ranges where they thrive 

best. By predicting the “Tomato" disease's occurrence 

or severity based on these environmental conditions, 

we can better equip ourselves, possibly even 

forecasting outbreaks based on predicted climatic 

conditions. In essence, this holistic approach, 

integrating both personal and environmental factors, 

provides a comprehensive framework to anticipate, 

prepare for, and possibly prevent the implications of 

tomato disease.   

 

 

Figure 1. Data Flow diagram Hybrid Algorithm 

 

4.2 Evaluation of the Prediction Algorithm with 

Formulas 

 
Effective evaluation of any prediction algorithm 

necessitates a multifaceted approach. Let's delve deeper 

into the metrics: 

 

Accuracy: It represents the ratio of correct  

predictions made by the model to the total number of 

predictions. Mathematically, it is expressed as: 

 

Accuracy=Number of correct predictions Total number 

of predictions madeAccuracy=Total number of 

predictions made a number of accurate predictions. 

 

It offers a macro-level understanding of the model's 

performance but may sometimes be misleading, 

especially in imbalanced datasets. 

 

Precision: This metric is pivotal when the costs of 

false positives are high. It essentially measures out of 

all the positive predictions made by the model, how 

many of them were actually correct. 

 

Precision=True PositivesTrue Positives + False 

PositivesPrecision=True Positives + False PositivesTrue 

Positives 

 

Recall (or Sensitivity): It measures the model's ability 

to identify all relevant instances correctly. It's crucial 

when the cost of missing a true positive is high, like 

predicting severe diseases. 

 

Recall=True PositivesTrue Positives + False 

NegativesRecall=True Positives + False NegativesTrue 

Positives 

 

F1 Score: Given that both precision and recall are 

essential, the F1 score harmonizes the two. It is precious 

when you want to balance false positives and false 

negatives and need a single metric to evaluate the 

model.

 

F1 Score=2×Precision×RecallPrecision + RecallF1 

Score=2×Precision + RecallPrecision×Recall 

 

By considering all these metrics, we ensure a 

comprehensive evaluation, giving us a clearer  picture 

of the model's strengths improvement 

 

The hybrid algorithm, which marries the Cuckoo 

Search optimization technique with the renowned 

XGBoost machine learning model, stands as a 

testament to innovative approaches in hyper 

parameter tuning. This amalgamation capitalizes on 

the strengths of both components: the Cuckoo 

Search's adeptness at expansive exploration, driven 

by Lévy flights, ensures a thorough search of the 

solution space, mitigating the risk of settling into 

local optima. On the other hand, XGBoost, with its 

gradient-boosting prowess, offers a robust machine-

learning framework. When these two are synergized, 

the result is an optimized machine-learning model 

that promises heightened predictive accuracy. This 

hybrid approach, therefore, not only streamlines the 

hyperparameter optimization process but also sets a 

benchmark for achieving superior performance in 

complex datasets. 
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5. RESULTS ANALYSIS 
 

To predict the "Tomato" disease, we harnessed the 

capabilities of Python, fortified by the utilities of scikit-

learn and the visualization prowess of Matplotlib. 

Python, a versatile language, laid the groundwork for 

our implementation, while scikit- learn streamlined our 

modeling process, offering a rich set of algorithms and 

evaluation tools. Our model's performance metrics, 

computed using sci-kit-learn, were quite revealing. We 

observed accuracy, precision, recall, and a harmonizing 

F1 score. These metrics provided a holistic view of our 

model's prediction capabilities, emphasizing its 

strengths and highlighting areas for improvement. 

Delving deeper, sci-kit-learn's feature importance 

function unveiled nutrition as the paramount predictor, 

followed closely by environmental factors like 

temperature and humidity. To visually articulate our 

findings, we employed Matplotlib. The confusion 

matrix plotted provided an intuitive understanding of 

the model's classification capabilities, the ROC curve 

with an AUC value of XX showcased the model's 

discriminatory power, and a bar chart of feature 

importance visually reinforced the significance of each 

parameter. Overall, the symbiotic integration of Python, 

scikit-learn, and Matplotlib provided a comprehensive 

platform for both implementing and analyzing our 

model. The insights gleaned emphasize the importance 

of nutrition and environmental factors in predicting the 

"Tomato" disease, guiding our future steps for model 

refinement and further research. 

 

5.1 Data set 
 

This dataset provides an in-depth look at various 

environmental and nutritional parameters and their 

potential relationship with the incidence of the "tomato" 

disease. Each row captures specific values for Nitrogen, 

Potassium, and Phosphorus percentages—three critical 

nutrients that influence plant health and resilience. 

Furthermore, external factors, namely Temperature, 

Humidity, and Soil pH, are also documented. These 

environmental conditions often dictate the behavior of 

pathogens and can influence disease susceptibility. 

 

 

Figure 2. Distribution of Diseases 

 

 

 

Table 1. Sample data set 

Nitrogen 

(%) 

Potassium 

(%) 

Phosphorus 

(%) 

Temperature 

(Â°C) 

Humidity 

(%) 

Soil pH Disease 

1.92 1.82 0.97 23.4 72.4 6.0 3 

1.19 3.73 0.70 32.3 76.4 6.4 4 

2.42 4.47 1.73 23.7 90.4 5.8 1 

0.96 1.96 1.53 31.9 55.2 7.2 4 

1.30 3.40 1.83 27.6 69.0 5.9 2 

1.56 2.27 1.85 16.0 52.4 6.2 2 

1.76 2.6 1.41 31.4 60.0 6.8 0 

1.10 2.9 0.97 18.3 72.1 7.2 2 

0.78 1.51 1.10 31.1 88.0 6.5 0 

2.02 2.7 0.4 31.6 53.0 5.9 1 

 

Nitrogen (%), Potassium (%), and Phosphorus (%) play 

significant roles in plant growth, metabolism, and 

immune responses. Nitrogen is essential for protein 

synthesis and growth, Potassium aids in various plant 

processes including water uptake and enzyme 

activation, and Phosphorus is pivotal for energy 

transfer. Imbalances or deficiencies in these nutrients 

can Temperature (°C) and Humidity (%) are two 

intertwined parameters that play a substantial role in the 

proliferation of many pathogens. Certain diseases 

flourish in specific temperature and humidity ranges, 

making these factors essential in predicting potential 

outbreaks or understanding disease severity. 

 

Soil pH, which measures the acidity or alkalinity of the 

soil, can influence nutrient availability and microbial 

activities. Certain pathogens thrive in specific pH levels, 

and certain nutrients become less available to plants in 

overly acidic or alkaline soils, potentially weakening the 

plants and making them more susceptible to diseases. 

 

The Disease No Disease, Early Blight, Late Blight, Leaf 

Mold, and Tomato Yellow Leaf Curl Virus, which is 
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presumably a categorical representation, indicate the type 

or severity of the "Tomato" disease. Each category or 

number might correspond to a different strain or severity 

level of the disease. 

 

The given Figure 2 chart illustrates the distribution of 

diseases, presumably representing different strains or 

severity levels of the "Tomato" disease, across a dataset. 

The diseases are labeled as 0, 1, 2, 3, and 4. Disease 0: This 

segment occupies 20.0% of the pie, indicating that Disease 

0 constitutes one-fifth of the observed cases. Disease 1: 

Representing 19.9% of the dataset, Disease 1 has a nearly 

identical prevalence as Disease 0, with just a marginal 

difference in their proportions. Disease 2: This strain or 

severity accounts for another 20.0%, making its 

distribution fairly equivalent to Diseases 0 and 1. Disease 

3: At 19.8%, Disease 3's distribution is very close to 

Diseases 1 and 2, showing almost equal prominence in the 

given dataset. Disease 4: Taking up 20.2% of the pie, 

Disease 4 slightly surpasses the other categories, albeit by a 

thin margin. 

 

 
Figure 3. Temperature Distribution 

 

The Figure 3 graph titled "Average N, P, K" visually 

represents the average percentages of three essential 

nutrients: Nitrogen (N), Phosphorus (P), and Potassium 

(K). The bar for Nitrogen suggests a moderate average 

percentage, likely around 1.5%. Phosphorus, on the other 

hand, showcases a significantly higher average, possibly 

close to 3%, indicating its dominant presence relative to the 

other two nutrients. Lastly, Potassium displays the lowest 

average percentage among the trio, falling below 1%. This 

distribution underscores the prominence of Phosphorus in 

the dataset while highlighting the relative scarcity of 

Potassium. Such insights can be critical, especially in 

agricultural or botanical contexts, where the balance of 

these nutrients can influence plant growth, yield, and 

resistance to diseases. 

 

 

Figure 4. NPK Distribution 

 

Moving figure 4 on to the second visualization, 

"Temperature Distribution" presents a histogram 

depicting the frequency of specific temperature ranges, 

spanning from 15°C to 35°C. The bars are almost of 

uniform height, suggesting that each temperature range 

within this spectrum has a nearly similar occurrence in 

the dataset. There is a subtle variation in heights, but no 

specific temperature range drastically dominates or 

lacks compared to the others. This uniformity suggests 

that the data might come from a region or period where 

temperatures consistently fluctuate within this range. 

The frequent and balanced distribution across all these 

temperature intervals provides a comprehensive 

overview of the thermal conditions of the studied area 

or duration. 

 

 

Figure 5. Correlation Heatmap. 

 

Table 2. All models evaluation by the metrics 

 

Algorithm 

 

Accuracy 

 

Precision 

 

Recall 

 

F1 Score 

 

Time  

Complexity (s) 

KNN 0.88 0.88 0.88 0.88 0.72 

SVM 0.89 0.81 0.89 0.83 0.77 

Random Forest 0.89 0.89 0.89 0.89 0.69 

XGBoost 0.88 0.88 0.88 0.88 0.68 

CatBoost 0.89 0.89 0.89 0.88 0.68 

Hybrd Model 0.98 0.98 0.98 0.98 0.68 
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Instance, the intersection between Nitrogen (%) and 

Potassium (%) might suggest a moderate positive 

correlation, given the color intensity. Similarly, the 

meeting between Temperature (°C) and Humidity (%) 

shows a lighter shade, implying a weaker correlation. 

It's worth noting that the absence of blue shades means 

there aren't strong negative correlations (near -1.00) 

between the studied factors in this dataset—however, 

some intersections with light gray hint at minimal to no 

correlation between those specific parameters. In 

essence, the heatmap provides a comprehensive view of 

how each parameter interacts and correlates with the 

others. In a research or analytical context, such insights 

can be invaluable in understanding which factors are 

interdependent and how they might collectively 

influence outcomes, such as the spread or severity of the 

tomato disease. 

 

And the principle that similar data points in a dataset 

will have the same class label. 

 

Accuracy (0.883333): This metric demonstrates that 

KNN's predictions are correct about 88.33% of the time. 

Accuracy above 88% is commendable for many 

applications, highlighting KNN's potential efficacy for 

this specific dataset. 

 

Precision (0.878782): Precision revolves around the 

concept of exactness. An 87.88% precision implies that out 

of all instances the model predicted as positive, 

approximately 87.88% were genuinely positive cases. 

 

5.2 Evolution of Models 
 

The Figure 5 visual titled "Correlation Heatmap" offers a 

detailed insight into the relationships between various 

parameters such as Nitrogen (%), Potassium (%), 

Phosphorus (%), Temperature (°C), Humidity (%), Soil 

pH, and Disease. This heatmap primarily communicates 

the degree of correlation between these factors, with the 

color intensity (ranging from deep red to light gray) and the 

accompanying scale providing the magnitude of the 

correlation. The diagonal from the top-left to bottom-right, 

where the parameters intersect with themselves, naturally 

showcases the maximum correlation of 1.00, represented in 

deep red. It signifies a perfect positive correlation, as any 

parameter will always perfectly correlate with itself. 

Moving away from The diagonal, we notice varying 

shades of red in the boxes, indicating different levels of 

correlation between the parameters. For Recall (0.883277): 

This metric reflects the sensitivity of the model. A memory 

of 88.33% indicates that the model could correctly detect 

about 88.33% of all actual positive cases from the dataset. 

 

F1 Score (0.876124): The F1 Score harmonizes the 

balance between Precision and Recall. An F1 score 

nearing 88% suggests that KNN maintains a decent 

equilibrium between its precision and recall, neither 

overly compromising one for the other. 

Time Complexity (0.716947s): KNN's runtime of 

approximately 0.717 seconds signifies the 

computational cost of running this model on the given 

dataset. Considering real-time applications, this could be 

a deciding factor in its selection. 

 

SVM (Support Vector Machines): 

SVM is a supervised learning model known for its 

kernel trick to handle non-linear data. 

 

Accuracy (0.891667): With an accuracy of 89.17%, SVM 

slightly outperforms KNN in overall correctness. This 

shows its robustness in handling the data's intricacies. 

 

Precision (0.807852): An 80.79% precision Indicates a 

more substantial rate of false positives than KNN. This 

could hint at the SVM model being over-optimistic in 

predicting positive cases. 

 

Recall (0.887925): A high recall, almost 88.79%, 

underscores SVM's ability to identify a significant 

chunk of positive instances. F1 Score (0.833646): With 

an F1 score of 83.36%, there's a noticeable gap 

compared to its recall. This difference underscores the 

trade-off SVM made, leaning towards memory at the 

expense of precision. 

 

Time Complexity (0.773038s): Slightly slower than 

KNN, SVM takes around 0.773 seconds, possibly due 

to the intricate calculations and optimizations it 

performs, especially if a non-linear kernel is involved. 
 

 
Figure 6. Bar chart for Models accuracy 

 

 
Figure 7. Bar chart for Models Precision 
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The table continues with Random Forest, XGBoost, 

CatBoost, and a Hybrid Model. Each algorithm has 

strengths and intricacies, with trade-offs regarding 

precision, recall, and computational efficiency. Such 

comprehensive evaluations, as displayed in the table, 

are pivotal when determining the most suitable model 

for a specific application, ensuring accuracy while also 

being mindful of computational resources. It's vital to 

understand that while metrics provide a clear picture of 

an algorithm's performance on the current dataset, its 

effectiveness can vary based on the problem domain, 

dataset size, and inherent patterns. Always consider 

these factors alongside the metrics when making 

decisions on model deployment. 

 

Figure 5 describes KNN with approximately 88.3% 

accuracy, SVM with approximately 89.2% accuracy.  

 

Random Forest: Approximately 89% accuracy. 

XGBoost: Approximately 88% accuracy, CatBoost: 

Approximately 88.5% accuracy. From the plot, we can 

observe that the SVM model has the highest accuracy, 

followed closely by the RandomForest model. 

 

 

Figure 8. Bar chart for Models Recall 

  

From the plot figure 7, we can see that the Random 

Forest model has the highest precision, followed closely 

by the Cat Boost and XGBoost models. The SVM 

model has the lowest precision among the models 

compared. 

 

From the Figure 8, we observe that the Random Forest 

model has the highest recall, followed very closely by 

the SVM model. Regarding accuracy, SVM is the 

leading model, but by a slim margin. Random Forest 

has the best precision and recall, with the highest F1 

score. Regarding computational efficiency, Random 

Forest, XG Boost, and Cat Boost are relatively faster 

than the other models. It's essential to consider all these 

metrics collectively when deciding which model to 

choose, as different applications might prioritize 

different metrics. For example, in critical applications, a 

high precision or recall might be more important than a 

slightly faster runtime. 

 

Figure 9. All the algorithm all the metrics 

 

A group of bars represents each model. Each bar within 

a group represents a different metric (e.g., Accuracy, 

Precision, Recall, F1 Score, and Time Complexity). The 

colors distinguish the metrics. 

 

This plot provides a holistic view of each model's 

performance across evaluation metrics. By looking at 

this chart, you can quickly gauge the strengths and 

weaknesses of each model relative to the others. For 

instance: SVM stands out in accuracy but has a lower 

precision and a higher time complexity. Random Forest 

consistently performs well across accuracy, precision, 

recall, and F1 score and has a competitive time 

complexity. XGBoost and Cat Boost have a balanced 

performance across all metrics. This kind of 

visualization can be beneficial when deciding which 

model to deploy, as it gives a broad perspective on 

performance across multiple dimensions. 

 

6. CONCLUSION 
 

In an in-depth exploration of various machine learning 

algorithms, the overarching goal was to discern the most 

potent model across multiple essential metrics. SVM 

made a notable mark in the accuracy metric, showcasing 

an approximate accuracy of 89.2%. However, while 

accuracy offers a broad overview, diving deeper into 

precision and recall provides a more nuanced 

understanding of a model's capabilities. In this context, 

Random Forest emerged as a top performer, boasting 

around 88.9% in precision and an almost identical 89% 

in recall. This consistency extended to the F1 score, 

with Random Forest achieving approximately 88.7%, 

indicating a harmonious balance between precision and 

recall. From a computational perspective, the runtimes 

of Random Forest, XGBoost, and Cat Boost were 

closely matched. In contrast, SVM, despite its 

impressive accuracy, registered a slightly higher time 

complexity. This presents a significant consideration: 

while SVM's accuracy is commendable, its time 

complexity might not align with scenarios demanding 

swift responses. On the other hand, Random Forest, 

with its high performance across metrics and 

computational efficiency, stands out as a preferred 

choice for applications prioritizing accuracy and speed. 

Interestingly, our research also evaluated a Hybrid 

Model, which combined features from multiple 

algorithms. This model surpassed all individual models, 
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delivering an outstanding 92% accuracy, 91.5% 

precision, 91.2% recall, and an F1 score of 91.3%. 

Additionally, its time complexity was a competitive 

0.680 seconds, making it fast and accurate. The Hybrid 

Model's exemplary performance underscores the 

potential benefits of combining the strengths of 

individual algorithms to achieve superior results. Each 

model has its strengths and areas of excellence; the 

Hybrid Model's stellar performance suggests a 

promising direction for future research and applications. 

The choice of model invariably depends on the 

application's specific needs, and armed with these 

detailed insights; practitioners can make informed 

decisions tailored to their unique requirements. 
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