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A B S T R A C T 

Estimating a common parameter is the most essential and quite fascinating 

task across various probability distributions. This article addresses the 

challenge of estimating this parameter through the application of Maximum 

Likelihood Estimation (MLE). Numeric determination of common parameters 

is conducted for several distributions, including the Lomax distribution, 

Gamma distribution, Rayleigh distribution, and Weibull distribution. In cases 

where distributions lack a closed-form solution, estimation of MLEs is 

achieved using the Newton-Raphson technique. Furthermore, asymptotic 

confidence intervals are computed utilizing the Fisher information matrix 

tailored to each distribution. The performance evaluation of these estimators 

centers on the assessment of bias and mean squared error. To enable a 

numerical comparison of these estimators, the Monte Carlo simulation 

method is employed. Finally, these techniques are applied to real-time rainfall 

data to assess parameter estimates for each distribution.  

                                                    © 2024 Published by Faculty of Engineering 

 

 

 

 

1. INTRODUCTION 

 

Measuring the entire population would be too difficult, 

parameters serve as descriptive measures of the 

population as a whole. Consequently, we resort to 

estimating parameters by selecting a sample from the 

population since we lack knowledge of their exact 

values. Various popular methods for parameter 

estimation include Bayes estimation, least square 

estimation, method of moments, uniformly minimal 

variance unbiased estimation (UMVUE) method, and 

others. However, owing to its distinctive characteristics, 

the most effective and renowned method for parameter 

estimation is the Maximum Likelihood (ML) approach. 

  

The British statistician, geneticist, and eugenicist 

R.A. Fisher, often referred to as the father of 

statistics, demonstrated (Aldrich, 1977) that the 

method of moments may not be effective when 

calculating the parameters of Pearson Type III 

distributions. He recommended applying the MLE 

approach instead. MLE is a straightforward technique 

for obtaining an estimate of an unknown parameter. 

A new distribution named as Generalized Exponential 

(GE) distribution introduced by (Gupta, 2001) 

estimated the unknown parameters of GE(α, λ) using 

MLE and compared with other estimation methods. 

While the estimation of parameters for various 

continuous distributions has been tackled individually 

by different authors in distinct ways, the comparative 

estimation of parameters for different distributions 
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has received little attention. The primary objective of 

this study is to estimate the common parameter of 

different populations in order to determine which 

distribution provides the best estimates for the 

collected rainfall data, considering their bias and 

mean squared error. 

 

In this study, common parameters are estimated for a 

variety of distributions, including the Lomax, Rayleigh, 

Weibull, and Gamma distributions. For each 

distribution, maximum likelihood estimators are 

determined numerically, and for those that lack a closed 

form, the MLEs are estimated using the Newton-

Raphson technique. Asymptotic confidence intervals 

have also been calculated using the Fisher information 

matrix of each distribution. Let‟s consider these 

distributions one by one. 

 

Lomax distribution: 

 
The Lomax distribution, first proposed by K.S. Lomax 

in 1954 for lifetime data analysis and modelling 

business failure data, is a special type of Pareto 

distribution, also known as the Pareto Type II 

distribution. Widely applied in various contexts, the 

Lomax distribution is known for its heavy-tailed 

characteristics. According to Hassan and Al Ghamdi, 

the Lomax distribution proves useful in reliability 

modelling and life testing problems. This distribution 

has unquestionably served as a model for various 

datasets in numerous studies. Harris, for instance, used 

the Lomax distribution for income and wealth data in 

1978. When dealing with heavily tailed data, the Lomax 

distribution is preferred over the exponential 

distribution. Moreover, it finds numerous applications 

across a range of disciplines, including biology, 

business, economics, actuarial modelling, queuing 

theory, and reliability modelling. 

 

Let us consider two independent Lomax populations 

with a common scale parameter „δ‟ and different shape 

parameters σ1 and σ2 respectively. Let 

  (         ) and   (         ) be m and n 

random samples taken from two Lomax Populations 

L(δ, σ1) and L(δ,σ2) respectively. Here L(δ, σ1) denotes 

the Lomax population having the probability density 

function. 

 (      )  
  

 
0   

 

 
1
 (    )

              

                 (1.1) 
likewise, L(δ, σ2) denotes the Lomax population which 

has the probability density function, 

 (      )  
  

 
0   

 

 
1
 (    )

              

                (1.2) 

 

Giles (2013) discussed MLE for the parameters of the 

Lomax distribution and alternative techniques for 

reducing this bias when the sample size is small. 

Hasanain (2022) delved into the parameter estimation of 

the Lomax distribution using three different loss 

functions, employing both MLE and Bayesian 

estimation methods. The Lindley approximation was 

utilized to obtain the best estimates. To draw 

conclusions about the parameters of a Lomax 

distribution, (He, 2023) established objective Bayesian 

techniques. Al- Zahrani and Sobhi (2013) estimated the 

parameters of the Lomax distribution under general 

progressive censoring by considering the probability 

density function of the two-parameter Lomax 

distribution. 

 

Rayleigh distribution:  

 
Among all probability distributions, the Rayleigh 

distribution is one of the most frequently used. 

Introduced by Lord Rayleigh in 1880, it generally 

appears as a special case of the Weibull distribution. 

The Rayleigh distribution finds significant applications 

in statistical communication theory and target theory. It 

is widely used in reliability analysis, applied statistics, 

and clinical investigations, all of which are extremely 

important fields. This distribution is in fact, a specific 

example of the Weibull distribution with two parameters 

scale and location. 

 

Let us consider two independent Rayleigh populations 

with a common scale parameter λ and different location 

parameters µ1 and µ2 respectively.   (         ) 

and   (         ) be m and n random samples 

taken from two Rayleigh Populations Ray(λ, µ1) and 

Ray(λ,µ2) respectively. Here Ray(λ, µ1) denotes the 

Rayleigh population having the probability density 

function, 

 

 (      )    (    ) 
  (    )

 
            0  

           (1.3)       

likewise, Ray(λ, µ2) denotes the population which has 

the probability density function, 

 

 (      )     (    ) 
  (    )

 
              

           (1.4)        

 

Dey et al. (2014) estimated the parameters of the 

Rayleigh distribution using various methods, 

including MLE, method of moments, L-moment 

estimators, least squares estimators, weighted least 

squares estimators, percentile-based estimators, and 

Bayes estimators, all for a single sample (Dey and 

Dey, 2012) estimated Bayesian estimators and 

calculated Prediction Intervals for a Rayleigh 

Distribution using conjugate prior. N. Balakrishnan, 

in 1989, derived the Approximate MLE of the Scale 

Parameter of the Rayleigh Distribution with 

Censoring (Kundu, 2005). They also derived the 

parameters of the Generalized Rayleigh distribution 

using different estimation methods. Johnson, Kotz, 

and Balakrishnan in 1994 briefly discussed the 

Rayleigh distribution with two parameters. In 

addition, (Bhat, 2023) formulated a new lifetime 
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probability model named the Power Rayleigh 

distribution, and the unknown parameters are 

estimated using MLE. 

 

Weibull distribution: 

 
The Weibull distribution was introduced by Mr. 

Waloddi Weibull in 1937. It is an adaptable distribution 

that can take on the characteristics of other types of 

distributions based on the shape parameter value. This 

distribution is particularly useful for analyzing life 

statistics and determining the reliability of items. The 

Weibull distribution finds extensive applications in life 

data analysis and reliability analysis due to its 

versatility, which is of paramount importance. It is 

primarily employed to model the range of behaviors for 

a given function, depending on the parameter values. 

The distribution function is typically well described by 

the probability density function. The Weibull 

distribution method represents one of the distinctive 

ways to analyze real-world data significantly. Several 

approaches are typically employed to assess the 

reliability of the data in a specific manner. 

 

Let us consider two independent Weibull populations 

with a common scale parameter „α‟ and different shape 

parameters β1 and β2 respectively.   (         ) 

and   (         ) be m and n random samples 

taken from two Weibull Populations Weibull(α, β1) and 

Weibull(α, β2) respectively. Here Weibull(α, β1) denotes 

the Weibull population having the probability density 

function, 

 (      )     
           .

 
 
/
  

            

           (1.5) 

likewise,  Weibull(α, β2) denotes the population  which 

has the probability density function 

 (      )     
           .

 
 
/
  

            

           (1.6) 

 

(Tan, 2009) in the year came to the conclusion that there 

is no analytical solution for the restricted MLE of the 

scale parameter for a given shape parameter, and he 

finally developed a new approach that is thought to be 

more effective and efficient at handling interval data 

than regular MLE methods, directly developed EM 

algorithms, as well as genetic algorithms. Stone (1977) 

used the maximum likelihood method to find the 

Weibull distribution‟s parameters, and they also gave a 

method for calculating confidence intervals. As can be 

seen from an example, the confidence intervals for 

sample sizes often used in dielectric life tests can be 

wide. Lai (2011) provided comprehensive explanations 

of a variety of extensions, parameter estimation 

techniques, and fundamental Weibull distribution 

characteristics that are useful for modelling complex 

data sets. N. Balakrishnan and Kateri proposed an 

alternative approach based on a simple and easy-to-

apply graphical method (Balakrishnan and Kateri (2008) 

also readily shows the existence and uniqueness of the 

maximum likelihood estimators. Yang et al (Yang, 

2007) proposed a new approach called Modified MLE 

(MMLE) In the case of complete and Type II censored 

data, the bias of the MLE can be substantial. This is 

noticeable even when the sample size is large.  

 

Gamma distribution: 
 

The Gamma distribution is a widely used and versatile 

statistical distribution in fields such as Business, 

Science, Reliability, Modelling, and Climate Analysis 

Centre (CAC), among others. It was first discovered by 

James Clerk Maxwell and later developed by Ludwig 

Boltzmann. In 2021, Eric U., Oti Michael, Olusola, and 

Francis studied the properties and applications of the 

Gamma distribution in real-life situations. 

 

Let us take two independent irregular samples from two 

Gamma populations with a common scale parameter „η‟ 

and different shape parameters ρ1 and ρ2 respectively. 

  (         ) and   (         ) be m and n 

random samples taken from two gamma populations 

Gamma(η, ρ1) and Gamma(η, ρ2) respectively. Here 

Gamma(η, ρ1) denote the gamma population having the 

probability density function, 

 (      )  
 

    
  

        
 

 

               

                (1.7) 

likewise, Gamma(η, ρ2) denotes the population which 

has the probability density function 

 (      )  
 

    
  

        
 

 

               .

                (1.8) 

 

Several studies have attempted to address the problem 

of estimating parameters of the Gamma distribution. 

Chapman (Hirose, 1995), S. C. Choi and R. Wette 

(Choi, 1969), Cohen and Whitten (Wilks, 1990), Daniel 

S. Wilks and Hideo Hirose (Nagamani, 2017) in 2017 

have applied the Maximum Likelihood Estimation 

(MLE) method to estimate parameters of the Gamma 

distribution. In addition to calculating the common 

shape parameter (Tripathy, 2017), they also estimated 

the parameters for the Gamma distribution using MLE 

(Husak, 2007). Husak (Shenton, 1969) estimated the 

MLEs of the Gamma distribution for monthly rainfall 

data in Africa. David E. Giles and Hui Feng (Shenton, 

1969) demonstrated how the methodology suggested by 

Cox and Snell in 1968 can be easily used to construct a 

closed-form adjustment to these MLEs. 

 

2. MAXIMUM LIKELIHOOD ESTIMATION 

AND THE ASYMPTOTIC CONFIDENCE 

INTERVALS OF VARIOUS 

CONTINUOUS DISTRIBUTIONS 

 
In this part, we examine our model and provide a 

numerical approach for calculating the maximum 

likelihood estimate of the parameters, as well as 

asymptotic 95% confidence intervals for the parameters 
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of Lomax, Weibull, Rayleigh, and Gamma distributions 

individually. 

 

2.1 MLE and Asymptotic confidence intervals 

of “Lomax distribution”:  

 
Let   (         ) and   (         ) be two 

independent random samples taken from Lomax(δ, σ1) 

 

In this sub section 2.1 we are going to estimate the 

maximum likelihood estimates of Lomax distribution as 

well as the confidence intervals for its parameters. 

 

Let us consider the joint probability density function of 

X and Y is, 

 

 (           )  
  

   
 

    
   ∏0  

  

 
1
 (    )

 

 

   

 

                                               ∏ 0  
  

 
1
 (    )

 
          

 

here σ1, σ2 > 0, δ > 0 and x, y > 0. 

 

 The log-likelihood function of f (x, y) is given by, 

 (           )                   (    )  

  ∑    0  
  

 
1 

    (    )∑    0  
  

 
1 

    

  (   )      

the maximum value of L(x, y; δ, σ1, σ2) can be obtained 

by differentiating with respect to δ , σ1 and σ2 and 

equating to zero. Then solving for δ, σ1 and σ2 we get 

the MLEs. After certain calculations the system of three 

nonlinear equations are obtained as follows. 

      

 (   )  ∑ 0
  (    )

    
1 

    ∑ [
  (    )
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 ∑    0  

  

 
1 

         

 

  
 ∑    0  

  

 
1 

        

      

next, we derive the information matrix and hence the 

expression for asymptotic variance of the MLEs of the 

parameters associated to our model.  

 

We have the log-likelihood function for our model as, 

  (           )                   (    )  

  ∑    0  
  

 
1 

    (    )∑    0  
  

 
1 

    

  (   )       

we denote θ1 =   , θ2 =    and θ3 = δ. The Fisher 

information matrix for our model is after certain 

calculations, we obtain the Fisher information matrix as 

follows. 

 (       )  (   )                  

 where        (   )  ,     
   

      
 

 (       )    
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here,        (    )(    ∑   
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 (    )(    ∑   
 ),     

 

    
        

 

    
  

then, the inverse of this matrix is obtained as, 
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  = 

[
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here,      
   

 [   
        

      
      ]

  
,   

    
   

 [   
          

    
      ]

  
, 

    (  
            

      
       

       
     

      
        ), 

  ∑   , b =∑   , c ∑   
 
, d = ∑   

 
      

      (    ) .    ∑  
 /

 (    ) .    ∑  
 / 

 

by using the above information, we can easily calculate 

the asymptotic 95% confidence intervals for the 

parameters δ, σ1 and σ2. The 95% confidence interval 

for θj is obtained as, 

       √( ( )  )
  

    

 the 95% confidence interval for the common scale 

parameter δ, shape parameters σ1 and σ2 are estimated as 

follows, 

 ̂       √
 ̂  
   

  
, 

 

 ̂        √     and  ̂        √    

 

2.2 MLE and Asymptotic confidence intervals 

of “Rayleigh distribution”:  
 

Let   (         ) and   (         ) be 

independent random samples taken from Ray(λ, µ1) and 

Ray(λ, µ2) (as given in 1.3 and 1.4) respectively, with 

common scale parameter λ and different Shape 

parameters µ1 and µ2. In this sub section 2.2 we are 

going to estimate the maximum likelihood estimates of 

Rayleigh distribution as well as the confidence intervals 

for its parameters.  

 

The joint probability density function of X and Y is 

obtained as, 
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 (       * +  * +)  (  )*   + ∏ (     )
* +
*   +   

 ∏ (     )
* +
*   +    .∑ (     )

  
    ∑ (     )

  
   /

 

t 

he log-likelihood function of f(x, y) is given by, 

 (           )  (   )   (  )  ∑   (     )

 

   

 

   ∑    (     )
 
     .∑ (     )

  
    ∑ (     )

  
   /

  

the maximum value of L(x,y;λ,µ1,µ2) can be obtained by 

differentiating with respect to µ1, µ2 and λ and equating 

to zero. Then solving for λ, µ1 and µ2 we get the MLEs. 

After certain calculations the system of three nonlinear 

equations are obtained as follows, 

 

 ̂  
   

∑ (     )
  

    ∑ (     )
  

   

            

  

∑ (     )
 
   

   ∑ (     )
 
         

  

∑ (     )
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next, we derive the information matrix and hence the 

expression for asymptotic variance of the MLEs of the 

parameters associated to our model. We have the log-

likelihood function for our model as, 

 (           )  (   )   (  )  ∑   (     )

 

   

 

   ∑    (     )
 
     .∑ (     )

  
    ∑ (     )

  
   /

     

we denote θ1 = µ1, θ2 = µ2 and θ3 = λ.  

The Fisher information matrix for our model is obtained 

as, 

 (       )  (   )                       (   ) 

     
   

      

 

after certain calculations, we obtain the Fisher 

information matrix as follows, 
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[

(       )      

 (       )     
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]      

              

here,   ∑ (     )
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the inverse of the matrix I(µ1 ,µ2, λ) is obtained as, 
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here,      
 [                      ]
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 [                      ]

  
, 

     
  ,      -,      -

  
, 

 

                               
                                            
                                                             . 

 

Using above information, we can easily calculate the 

asymptotic 95% confidence intervals for the parameters 

λ, µ1 and µ2. The 95% confidence interval for θj is 

obtained as, 

       √( ( )  )
  

  

the 95% confidence intervals for the common rate 

parameter λ and shape parameters µ1 and µ2 are 

estimated respectively as follows. 

 

 ̂       √   , 

 ̂        √     and  ̂        √   . 

 

2.3 MLE and Asymptotic Confidence Intervals 

of “Weibull Distribution”:  

 
Let   (         ) and   (         ) be 

independent random samples taken from Weibull(α, β1) 

and Weibull(α, β2)(as given in1.5 and 1.6) respectively, 

with common scale parameter α and different shape 

parameters β1 and β2. In this sub section 2.3 we are 

going to estimate the maximum likelihood estimates of 

Weibull distribution as well as the confidence intervals 

for its parameters.  

 

Let us consider the joint probability density function of 

X and Y is, 

 

 (            )    
   

   (       )   

(∏   
     

   )(∏   
     

   ) 
 {
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∑  

 
   

   

   
}

 

  

 

the log-likelihood function of f(x, y) is given by, 

 

 (           )                

 (       )     (    )∑     

 

   

       

                 (    )∑      
 
     {

∑   
   

   

   
 

∑   
   

   

   
} 

the maximum value of L(x, y; α, β1, β2) can be obtained 

by differentiating with respect to α , β1 and β2 and 

equating to zero. Then solving for α , β1 and β2 we get 

the MLEs. After certain calculations the system of three 

nonlinear equations are obtained as follows. 
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next, we derive the information matrix and hence the 

expression for asymptotic variance of the MLEs of the 

parameters associated to our model. We have the log-

likelihood function for our model as, 

we have the log-likelihood function for our model as, 

 (           )                

 (       )     (    )∑     

 

   

       

                 (    )∑      
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} 

we denote θ1 =  , θ2 =    and θ3 =   . The Fisher 

information matrix for our model is obtained as, 

 (       )  (   )                        (   ) 

     
   

      

 

after certain calculations, we obtain the Fisher 

information matrix as follows, 
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the inverse of this matrix   (       ) is obtained as, 
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Here,              
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By using above information, we can easily calculate the 

asymptotic 95% confidence intervals for the parameters 

          . The 95% confidence interval for θj is 

obtained as, 

 

       √( ( )  )
  

  

the 95% confidence intervals for the parameters 

           are as follows 

 ̂       √
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2.4 MLE and Asymptotic Confidence Intervals 

of “Gamma Distribution”:  

 
Let   (         ) and   (         )be 

independent random samples taken from Gamma(ρ1, η) 

and Gamma(ρ2, η) (as given in 1.7 and 1.8) respectively, 

with common scale parameter η and different Shape 

parameters ρ1 and ρ2. In this sub section 2.4 we are 

going to estimate the maximum likelihood estimates of 

Gamma distribution as well as the confidence intervals 

for its parameters.  

 

The joint probability density function of X and Y is 

obtained as, 
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(    

   )
    

.    
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the log-likelihood function of f(x, y) is given by, 
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          (   )   
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({∑   

 
    ∑   

 
   )} 

      

the maximum value of  (           ) can be obtained 

by differentiating with respect to ρ1, ρ2, and η and 

equating to zero. Then solving for ρ1, ρ2, and η we get 

the MLEs. After certain calculations the system of three 

nonlinear equations are obtained as follows, 
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* +
*   +    (  )             
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Where,   

 (  )  
 

   
(      )            (  )  

 

   
(      ) 

are known as the digamma functions. 

 

next, we derive the information matrix and hence the 

expression for asymptotic variance of the MLEs of the 

parameters associated to our model. We have the log-

likelihood function for our model as, 
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we denote θ1 =  , θ2 =    and θ3 =   . The Fisher 

information matrix for our model is obtained as, 

 (       )  (   )                       (   ) 

     
   

      

 

after certain calculations, we obtain the Fisher 

information matrix as follows. 
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where ψ‟ (ρ1) and ψ′ (ρ2) are the derivative of digamma 

function known as tri gamma functions. The inverse of 

this matrix is obtained as, 
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by using above information, we can easily calculate the 

asymptotic 95% confidence intervals for the parameters 

η, ρ1 and ρ2.  

 

The 95% confidence interval for θj is obtained as, 

 

       √( ( )  )
  

  

 

the 95% confidence intervals for the common rate 

parameter η and shape parameters ρ1, ρ2 are obtained 

respectively as follows. 

 ̂       √
 ̂  
   ( ̂   ) 

 ( ̂   )

 
 

 ̂        √
(  ̂      ̂   ) 

 ( ̂   )   

  
 

 ̂        √
(  ̂      ̂   ) 

 ( ̂   )   

  
  

using the Monte-Carlo simulation approach in R 

programming, all of the above-mentioned estimators are 

numerically compared in section-3 in terms of bias and 

mean squared error. 

 

3. NUMERICAL COMPARISONS 

 
In this research, we address the problem of estimating 

parameters for two similar continuous probability 

distributions, specifically the Lomax, Weibull, 

Rayleigh, and Gamma distributions, using the 

Maximum Likelihood Estimation (MLE) method. As 

the closed form of the ML estimates does not exist, we 

are going to use a numerical technique named as 

Newton-Raphson method to find approximate ML 

estimates of the common parameter by solving the 

system of equations of different distributions. 

Furthermore, we compute the 95% confidence intervals 

with the help of Fisher information matrix. To compare 

these estimators numerically, we evaluate their 

performance in terms of bias and mean squared error. 

For this purpose, we generate 10,000 random samples 

for each distribution and compute the bias and mean 

squared error of each parameter. 

 

By taking the different values of parameters we 

computed the Estimates, from the table 3.1 to 3.4 

represents equal sample sizes of both the samples of 

different continuous probability distributions from 10 to 

50 the ML-estimates of all parameters with its Bias and 

mean squared error are reported. From table 3.5 to 3.8 

having different combination of sample sizes from 10 to 

50 with unequal sample sizes, the ML-estimates of all 

parameters with its bias and mean squared error are 

computed. From Table 3.9 to 3.12 are the values of 95% 

Asymptotic confidence intervals for the distributions of 

Lomax, Weibull, Rayleigh and Gamma distributions 

respectively, with various different values of common 

parameter are computed. 

1. MLE provided consistent and efficient parameter 

values for every distribution considered in the study. 

2. From the simulation data, it can be said that 

increasing the sample size reduced both the bias and 

mean square error for each estimator. 

3. Larger sample sizes generally resulted in more 

accurate parameter estimates with lower standard error. 

4. With small sample sizes, the MLE estimates had 

higher variability and larger standard errors. 

5. It was observed that, for fixed sample sizes and fixed 

shape parameters, the common scale parameter of these 

distributions increased and its mean squared error 

values decreased. 

6. All the parameter values lay inside the confidence 

intervals, and the length of confidence intervals for all 

parameters decreased as the sample size grew. 
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7. The width of the confidence intervals depended on 

the sample size and the desired level of confidence. 

8. As the sample size increased, the width of the 

confidence intervals decreased, indicating increased 

precision in parameter estimation. 

9. Based on the specific context and characteristics of 

the data, it can be analyzed that every distribution has its 

own individuality and identity. 

10. Our simulation analysis yielded comparable results 

for other combinations of sample sizes and parameters.

Table 3.1. Comparing Biases and MSE of Several Estimators of Several distributions For The different parameters 

when (m,n) = (10,10). 

Θ ↓ Lomax(θ=σ1, σ2, δ) Weibull(θ=β1, β2, α) Rayleigh(θ=µ1, µ2, λ) Gamma(       ) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 1.26 0.26 0.76 1.11 0.11 0.11 1.19 0.19 0.26 1.21 0.21 0.26 

2 1.77 -0.22 0.46 2.25 0.25 0.32 2.40 0.40 0.44 2.45 0.45 0.48 

1.5 1.41 -0.09 0.44 1.49 -0.00 0.05 1.35 -0.14 0.26 1.35 -0.14 0.27 

1 1.43 0.43 0.39 1.10 0.10 0.11 1.22 0.22 0.24 1.21 0.21 0.24 

2 1.93 -0.06 0.09 2.37 0.37 0.71 2.39 0.39 1.18 2.47 0.47 1.24 

2.5 2.35 -0.14 1.48 2.50 -0.00 0.15 2.22 -0.22 0.53 2.25 -0.20 0.74 

1 1.24 0.24 0.78 1.10 0.10 0.12 1.21 0.21 0.25 1.20 0.20 0.24 

2 2.18 0.18 0.15 2.30 0.30 0.53 2.28 0.28 0.61 2.46 0.46 1.21 

3.5 3.37 -0.12 0.42 3.46 -0.03 0.29 3.34 -0.15 0.63 3.15 -0.34 1.43 

 

Table 3.2. Comparing Biases and MSE of Several Estimators of Several distributions For The different parameters 

when (m,n) = (20,20). 

Θ ↓ Lomax(θ=σ1,σ2,δ) Weibull(θ=β1,β2,α) Rayleigh(θ=µ1,µ2,λ) Gamma(       ) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 1.23 0.23 0.60 1.04 0.04 0.03 1.11 0.11 0.25 1.08 0.08 0.08 

2 1.79 -0.20 0.45 2.14 0.14 0.20 2.20 0.20 0.33 2.21 0.21 0.34 

1.5 1.37 -0.12 0.39 1.49 -0.00 0.02 -0.05 0.11 0.19 1.42 -0.07 0.13 

1 1.34 0.34 0.27 1.05 0.05 0.04 1.11 0.11 0.09 1.09 0.09 0.08 

2 1.97 -0.02 0.03 2.12 0.12 0.19 2.21 0.21 0.36 2.22 0.22 0.37 

2.5 2.38 -0.11 1.33 2.49 -0.00 0.02 -0.18 0.34 0.22 2.35 -0.14 0.34 

1 1.18 0.18 0.74 1.04 0.04 0.03 2.31 -0.18 0.34 1.10 0.10 0.09 

2 2.16 0.16 0.13 2.16 0.16 0.18 2.24 0.24 0.48 2.22 0.22 0.35 

3.5 3.41 -0.08 0.35 3.49 -0.00 0.00 3.28 -0.22 0.42 3.30 -0.19 0.75 

 

Table 3.3. Comparing Biases and MSE of Several Estimators of Several distributions For The different parameters 

when (m,n) = (30,30). 

Θ ↓ Lomax(θ=σ1,σ2,δ) Weibull(θ=β1,β2,α) Rayleigh(θ=µ1,µ2,λ) Gamma(       ) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 1.18 0.18 0.43 1.03 0.03 0.02 1.09 0.09 0.20 1.06 0.06 0.04 

2 1.81 -0.18 0.36 2.08 0.08 0.10 2.13 0.13 0.21 2.13 0.13 0.21 

1.5 1.42 -0.07 0.28 1.49 -0.00 0.01 1.45 -0.04 0.08 1.45 -0.04 0.09 

1 1.15 0.15 0.24 1.03 0.03 0.02 1.05 0.05 0.08 1.06 0.06 0.04 

2 1.98 -0.01 0.01 2.08 0.08 0.11 2.13 0.13 0.20 2.14 0.14 0.21 

2.5 2.41 -0.08 1.27 2.49 -0.00 0.04 2.41 -0.08 0.22 0.241 -0.08 0.25 

1 1.14 0.14 0.68 1.03 0.03 0.02 1.07 0.07 0.04 1.08 0.08 0.05 

2 2.11 0.11 0.10 2.09 0.09 0.11 2.13 0.13 0.19 2.18 0.18 0.24 

3.5 3.48 -0.00 0.33 3.49 -0.00 0.09 3.41 -0.08 0.38 3.31 -0.18 0.51 

 

Table 3.4. Comparing Biases and MSE of Several Estimators of Several distributions For The different parameters 

when (m,n) = (50,50). 

Θ ↓ Lomax(θ=σ1,σ2,δ) Weibull(θ=β1,β2,α) Rayleigh(θ=µ1,µ2,λ) Gamma(       ) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 1.04 0.04 0.08 1.02 0.02 0.01 1.05 0.05 0.07 1.03 0.03 0.02 

2 1.91 -0.08 0.22 2.04 0.04 0.05 2.06 0.06 0.11 2.08 0.08 0.10 

1.5 1.48 -0.01 0.07 1.49 -0.00 0.01 1.47 -0.02 0.05 1.46 -0.03 0.05 

1 1.12 0.12 0.13 1.01 0.01 0.01 1.04 0.04 0.05 1.08 0.08 0.07 

2 1.98 -0.01 -0.00 2.06 0.06 0.05 2.08 0.08 0.11 2.18 0.18 0.34 

2.5 2.47 -0.02 1.18 2.49 -0.00 0.02 2.43 -0.06 0.14 2.36 -0.11 0.37 

1 1.09 0.09 0.45 1.01 0.01 0.01 1.03 0.03 0.02 1.04 0.04 0.02 

2 2.04 0.04 0.08 2.05 0.05 0.05 2.07 0.07 0.09 2.10 0.10 0.10 

3.5 3.49 -0.00 0.25 3.50 -0.00 0.04 3.47 -0.02 0.02 3.39 -0.10 0.29 
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Table 3.5. Comparing Biases and MSE of Several Estimators of Several distributions For The different 

parameters when (m,n) = (10,20). 

Θ ↓ Lomax(θ=σ1,σ2,δ) Weibull(θ=β1,β2,α) Rayleigh(θ=µ1,µ2,λ) Gamma(       ) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 1.21 0.21 0.24 1.05 0.05 0.06 1.31 0.31 0.89 1.61 0.16 0.17 

2 1.79 -0.20 0.21 2.19 0.19 0.22 1.98 -0.01 0.02 0.29 0.29 0.44 

1.5 1.42 -0.07 0.05 1.50 -0.00 0.02 1.54 0.04 0.16 1.35 -0.14 0.15 

1 1.39 0.39 0.29 1.06 0.06 0.08 1.07 0.07 0.04 1.12 0.12 0.14 

2 1.82 -0.17 0.14 2.19 0.19 0.18 1.86 -0.13 0.18 2.15 0.15 0.29 

2.5 2.41 -0.08 0.11 2.51 0.01 0.06 2.46 -0.13 0.19 2.39 -0.10 0.36 

1 1.22 0.22 0.19 1.10 0.10 0.12 1.07 0.07 0.12 1.06 0.06 0.10 

2 1.94 -0.05 0.14 2.12 0.12 0.15 2.04 0.04 0.09 2.32 0.32 0.57 

3.5 3.34 -0.15 0.27 3.54 -0.04 0.18 3.47 -0.02 0.04 3.30 -0.19 0.94 

 

Table 3.6. Comparing Biases and MSE of Several Estimators of Several distributions For The different parameters 

when (m,n) = (20,10). 

Θ↓ Lomax(θ=σ1,σ2,δ) Weibull(θ=β1,β2,α) Rayleigh(θ=µ1,µ2,λ) Gamma(       ) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 1.18 0.18 0.45 1.05 0.05 0.04 1.14 0.14 0.74 1.12 0.12 0.11 

2 1.82 -0.17 3.1 2.28 0.28 0.54 2.07 0.07 0.26 2.29 0.29 0.66 

1.5 1.34 -0.15 0.22 1.49 -0.00 0.04 1.57 0.07 0.25 1.39 -0.1 0.19 

1 1.34 0.34 0.28 1.04 0.04 0.03 1.15 0.15 0.42 1.12 0.12 0.10 

2 1.94 -0.05 0.19 2.26 0.26 0.53 1.96 -0.03 0.14 2.34 0.34 0.71 

2.5 2.39 -0.10 0.14 2.48 0.17 0.13 2.48 -0.01 0.02 2.32 -0.17 0.48 

1 1.14 0.14 0.22 1.05 0.05 0.04 1.12 0.12 0.49 1.10 0.10 0.10 

2 2.11 0.11 0.17 2.3 0.30 0.57 1.98 -0.01 0.01 2.30 0.30 0.63 

3.5 3.42 -0.07 0.15 3.47 -0.02 0.23 3.45 -0.04 0.24 3.32 -0.17 0.99 

 

Table 3.7. Comparing Biases and MSE of Several Estimators of Several distributions For The different parameters 

when (m,n) = (30,50). 

Θ ↓ 

 

Lomax(θ=σ1,σ2,δ) Weibull(θ=β1,β2,α) Rayleigh(θ=µ1,µ2,λ) Gamma(       ) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 1.14 0.14 0.32 1.03 0.03 0.02 1.04 0.04 0.38 1.04 0.04 0.03 

2 1.95 -0.04 3.98 2.05 0.05 0.05 1.95 -0.05 0.15 2.09 0.09 0.12 

1.5 1.43 -0.06 0.24 1.49 -0.00 0.11 1.47 -0.02 0.06 1.46 -0.03 0.06 

1 1.13 0.13 0.29 1.02 0.02 0.02 1.21 0.21 0.78 1.05 0.05 0.03 

2 1.97 -0.02 0.08 2.04 0.04 0.05 1.88 -0.11 0.96 2.09 0.09 0.12 

2.5 2.41 -0.08 0.19 2.49 -0.00 0.00 2.43 -0.06 0.73 2.44 -0.05 0.18 

1 1.11 0.11 0.39 1.02 0.02 0.02 1.27 0.27 0.85 1.04 0.04 0.03 

2 2.05 0.05 0.07 2.05 0.05 0.06 1.87 -0.12 0.41 2.08 0.08 0.12 

3.5 3.45 -0.04 0.08 3.48 -0.00 0.05 3.38 -0.11 0.24 3.41 -0.08 0.35 

 

Table 3.8. Comparing Biases and MSE of Several Estimators of Several distributions For The different parameters 

when (m,n) = (50,30). 

Θ ↓ Lomax(θ=σ1,σ2,δ) Weibull(θ=β1,β2,α) Rayleigh(θ=µ1,µ2,λ) Gamma(       ) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 1.06 0.06 0.08 1.02 0.02 0.01 1.18 0.18 0.43 1.04 0.04 0.03 

2 1.88 -0.11 0.12 2.10 0.10 0.10 1.92 -0.07 0.39 2.11 0.11 0.17 

1.5 1.44 -0.05 0.08 1.49 -0.00 0.00 1.41 0.08 0.48 1.45 -0.04 0.07 

1 1.11 0.11 0.27 1.02 0.02 0.01 1.22 0.22 0.88 1.04 0.04 0.03 

2 1.97 -0.02 0.02 2.08 0.08 0.10 1.87 -0.12 0.76 2.11 0.11 0.15 

2.5 2.48 -0.01 0.04 2.49 -0.00 0.04 2.31 -0.28 1.03 2.41 -0.08 0.18 

1 1.08 0.08 0.14 1.01 0.01 0.01 1.27 0.27 0.97 1.05 0.05 0.03 

2 2.10 0.10 0.31 2.09 0.09 0.10 1.92 -0.07 0.97 1.22 0.11 0.16 

3.5 3.48 -0.01 0.01 3.49 -0.00 0.08 3.37 -0.12 0.39 3.37 -0.12 0.38 
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The Asymptotic Confidence intervals for the parameters 

of lomax, Weibull, Rayleigh and Gamma Distributions 

with its parameter values and various combinations of 

sample sizes are computed in the following tables. 

 

Table 3.9. The 95% confidence intervals of Gamma Distribution for the parameters (       ). 

(m,n) Conf(ρ1 = 2) Conf(ρ2 = 3) Conf(η = 1.5) Conf(ρ1 = 2) Conf(ρ2 = 3) Conf(η = 2.5) 

(10,10) (0.55,4.38) (1.77,5.60) (-0.57,3.2) (0.45,4.55) (1.75,5.85) (0.19,4.29) 

(15,15) (0.98,3.58) (2.10,4.76) (0.11,2.70) (0.95,3.61) (2.09,4.74) (1.01,3.66) 

(30,30) (1.32,2.98) (2.39,4.05) (0.60,2.27) (1.31,2.93) (2.42,4.03) (1.58,3.20) 

(50,50) (1.47,2.71) (2.51,3.75) (0.84,2.08) (1.47,2.65) (2.52,3.70) (1.85,3.03) 

(10,15) (0.77,3.98) (1.94,5.15) (-0.20,2.98) (0.79,3.92) (1.96,5.09) (0.74,3.87) 

(15,10) (0.80,3.89) (1.97,5.06) (-0.14,2.94) (0.91,3.75) (2.11,4.94) (0.89,3.73) 

(30,50) (1.36,2.86) (2.42,3.92) (0.70,2.20) (1.38,2.82) (2.42,3.86) (1.77,3.15) 

(50,30) (1.39,2.80) (2.47,3.87) (0.76,2.16) (1.41,2.77) (2.48,3.84) (1.75,3.11) 

 

Table 3.10. The 95% confidence intervals of Weibull Distribution for the parameters (β1,β2,α). 

(m,n) Conf(β1 = 2) Conf(β2 = 3) Conf(α = 1.5) Conf(β1 = 2) Conf(β2 = 3) Conf(α = 2.5) 

(10,10) ( 0.85 , 3.58 ) (1.29 , 5.53) (1.20 , 1.78) (0.83 , 3.57) ( 1.24 , 5.61) (1.98 , 2.97) 

(15,15) (1.16 , 3.12) (1.67 , 4.87) (1.26 , 1.72) (1.19 , 3.10) (1.64 , 4.91) ( 2.12 , 2.87) 

(30,30) ( 1.44 , 2.68) (2.19 , 4.04) (1.33, 1.65) (1.45 , 2.70) ( 2.18 , 4.00) (2.23 , 2.76) 

(50,50) (1.59 , 2.52) (2.37 , 3.76) (1.37 , 1.61) (1.59 , 2.56) ( 2.38 , 3.75) ( 2.29 , 2.69) 

(10,15) (0.91 , 3.50) (1.74 , 4.77) ( 1.25 , 1.73) (0.89 , 3.61) (1.66 , 4.80) ( 2.07 , 2.90) 

(15,10) (1.10 , 3.21) (1.26 , 5.53) (1.23 , 1.76 ) (1.08 , 3.23) (1.21 , 5.77) (2.03 , 2.93) 

(30,50) (1.46 , 2.67) (2.35 , 3.82) (1.36 , 1.62) (1.45 , 2.68) (2.36 , 3.76) ( 2.28 , 2.71) 

(50,30) (1.58 , 2.50) (2.17 , 4.05) (1.354 , 1.64) (1.60 , 2.50) (2.16 , 4.10) ( 2.24 , 2.75) 

 

Table 3.11. The 95% confidence intervals of Lomax Distribution for the parameters (σ1,σ2,δ). 

(m,n) Conf(σ1 = 2) Conf(σ2 = 3) Conf(δ = 1.5) Conf(σ1 = 2) Conf(σ2 = 3) Conf(δ = 2.5) 

(10,10) (-0.30 , 3.63) (-5.06 , 5.73) (-1.48 , 10.61) (-0.11 , 4.38) (-4.79 , 5.79) ( 0.66 , 7.44) 

(15,15) (0.04 , 3.48) (-5.33 , 5.77) (-1.47 , 10.59) (0.23, 4.17) (-5.15 , 5.80) (0.75 , 7.53) 

(30,30) (0.55 , 3.19) ( -5.65 , 5.83) (-1.46 , 10.58) (0.78 , 3.94) (-5.55 , 5.84) ( 0.84 , 7.52) 

(50,50) (0.83 , 2.98) (-5.79 , 5.86) (-1.47 , 10.61) (1.21 , 3.75) (-5.79 , 5.87) (0.86 , 7.51) 

(10,15) (1.08 , 3.49) (-5.79 , 5.86) (-1.21 , 9.83) ( 0.62 , 4.13) (-5.44 , 5.83) (0.79 , 7.50) 

(15,10) (-1.75 , 3.75) (-3.77 , 5.48) (-1.60 , 10.96) (-0.62 , 4.36) ( -4.43 , 5.73) (0.54 , 7.77 ) 

(30,50) (1.39 , 3.72) (-5.88 , 5.88) (-1.08 , 9.46) (1.32 , 3.82) (-5.84 , 5.87) (0.89 , 7.42) 

(50,30) (-2.02 , 3.61) (-3.69 , 5.43) (-1.72 , 11.36) (0.16 , 3.84) (-5.22 , 5.82) (0.57 , 8.17) 

 

Table 3.12. The 95% confidence intervals of Rayleigh Distribution for the parameters (µ1,µ2,λ). 

(m,n) Conf(µ1 = 2) Conf(µ2 = 3) Conf(λ = 1.5) Conf(µ1 = 2) Conf(µ2 = 3) Conf(λ = 2.5) 

(10,10) (0.61, 3.36) (0.25 , 3.90) (-0.01 , 6.16) (-0.09 , 6.62) (0.19 , 3.91) (1.95 , 4.15) 

(15,15) (0.75 , 2.81) (0.17 , 3.92) (0.01 , 6.07) (0.56 , 5.25) (0.14, 3.92) (1.97 , 4.10) 

(30,30) (0.73 , 2.53) (0.11 , 3.93) (0.03 , 6.02) (0.99 , 4.51) (0.10 , 3.94) ( 1.99 , 4.05) 

(50,50) (0.70 , 2.48) (0.10 , 3.94) (0.03 , 6.00) (1.20 , 4.09) (0.08 , 3.94) (2.00 , 4.02) 

(10,15) (0.71, 3.01) (0.22 , 3.91) (0.00 , 6.11) (0.36 , 5.70) (0.17 , 3.92) (1.96 , 4.11) 

(15,10) (0.72 , 3.04) (0.20 , 3.91) (-0.01 , 6.14) (0.32 , 5.75) (0.15 , 3.92) (1.96 , 4.13) 

(30,50) (0.73 , 2.50) (0.17 , 3.93) (0.03 , 6.00) (1.13 , 4.22) (0.09, 3.94) (2.00 , 4.03) 

(50,30) (0.74 , 2.50) (0.10 , 3.94) (0.03 , 6.01) (1.12 , 4.28) (0.08, 3.94) (1.99 , 4.04) 
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3.1 Example 

In addition, by taking real rainfall data of the Union 

territory “Andaman and Nicobar Islands” in the span of 

60 years, the rain fall data of one population of 30 years 

from 1911-1940 and another population of 30 years 

from 1971-2000 are taken as data of two populations, 

here in the collected data the rain fall is measured in 

millimeters  

of rain fell over the year, there is huge difference occurs 

from month to month as well as year to year in the rain 

fall data. 

 

For this data the parameters are estimated as well as the 

bias and mean squared error values are calculated for 

each distribution. 

 
Table 3.13. Comparing Biases and MSE of Several Estimators of Several distributions for real data. 

Θ ↓ Lomax(θ=σ1,σ2,δ) Weibull(θ=β1,β2,α) Rayleigh(θ=µ1,µ2,λ) Gamma((ρ1,ρ2,η)) 

Mle Bias Mse Mle Bias Mse Mle Bias Mse Mle Bias Mse 

1 4.21 3.21 10.32 6.29 5.29 27.99    0.98 -0.02 0.04 16.02 15.02 225.64 

2 4.12 2.12 4.50 6.14 4.14 17.20 1.84 -0.15 0.23 15.28 13.28 176.42 

1.5 7.70 -1.5 2.25 245 243.97 59524.1 1.41 -0.08 0.15 14.62 13.21 172.23 

 
By Observing the above values of all the parameters, its 

bias and mean square error, For the considered real Rain 

fall data, the Rayleigh distribution is the best fit when 

compared to the remaining distributions like Lomax, 

Weibull and Gamma distributions. 

 

The Rayleigh distribution holds potential for various 

future applications, including: 

a) Signal and Image Processing: The Rayleigh 

distribution plays a crucial role in modelling noise in 

applications like MRI image processing. It aids in 

characterizing noise characteristics and developing 

effective denoising techniques. 

b) Sea State Analysis: In oceanography and wave 

modelling, the Rayleigh distribution is employed to 

describe the distribution of wave heights in random sea 

states. This assists in predicting extreme wave events. 

c) Wireless Communication: The Rayleigh distribution 

is a common choice for modelling the magnitude of 

received signals in fading wireless communication 

channels due to multipath propagation. 

d) Wind Speed Analysis: In meteorology and wind 

engineering, the Rayleigh distribution is applied to 

model the distribution of wind speeds. This provides 

valuable insights into statistical properties and aids in 

estimating extreme wind events, among other 

applications. 

 

This real-world application of statistical techniques 

offers valuable insights into the behavior of these 
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distributions and holds potential utility for modelling or 

prediction purpose. Overall, the study provides a 

comprehensive analysis of multiple distributions and 

their parameters, potentially impacting a wide range of 

applications across various fields. 

 

4. CONCLUSION  
 

In this study, we have addressed the problem of 

estimating parameters for two similar continuous 

probability distributions, such as Lomax, Weibull, 

Rayleigh, and Gamma distributions, utilizing the 

method of Maximum Likelihood Estimation (MLE). 

Due to the absence of closed-form expressions for the 

ML estimates, we employed a numerical technique 

known as the Newton-Raphson method to approximate 

the ML estimates of the common parameter by solving 

the system of equations for different distributions. 

Following the calculation of the ML estimates for each 

distribution, we proposed 95% asymptotic confidence 

intervals for each parameter of every distribution using 

the Fisher information matrix. Additionally, the study 

conducted simulations for each distribution with varying 

sample sizes, estimating the values of the parameters, 

bias, and mean squared error (MSE). This 

comprehensive analysis allowed for a thorough 

examination of the behavior of each distribution under 

different conditions. 

 

Based on the simulation data, we can conclude that 

increasing the sample size reduces both the bias and 

mean square error for each estimator. It has been 

observed that for fixed sample sizes and fixed shape 

parameters, the common scale parameter of these 

distributions increases, resulting in decreased bias and 

mean square error values. 
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