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A B S T R A C T 

In digital circuits, particularly space signal applications, the detection/estimation of phase 

(angle) like milli degree is challenging and involves many complex operations. To estimate 

milli degree (10-3) or more, floating point operations (like double precision adders, 

subtractions, multiplications, and divisions) are the significant components and power and 

area consumption; delays are more in existing works. Existing works mainly concentrate 

on clock-based synchronous operations, which require more hold, and clock distribution is 

another major problem due to extra circuitry requirements. The proposed pipelined and 

clock-efficient distribution system (CEDS) is incorporated in the Floating-Point Unit 

(FPU) design to address these issues. It includes a double-precision adder, multiplication, 

division, and subtraction. These FPU and CEDS can be used to detect Milli Degree for 

GHz frequency in Space applications more accurately. The floating points are essential in 

phase shift operation used in the space-borne system for effective correction of error 

checking rather than execution of error analysis in the real-time scenario. Modern digital 

circuits can hardly improve due to limitations of physical area consumption. The 

substitution for these limitations, the new digital ternary logic (0, 1, 2), is the solution 

because of its higher number of digital circuits involved in floating points. The ternary 

logic is the best solution for the minimization of number bits to optimize memory 

utilization, and ternary logic has Negative Ternary Inverter (NTI), Ternary Decrement 

Cycling Inverter (DCI), Standard Ternary Inverter (STI,) and Positive Ternary Inverter 

(PTI). The proposed design is successfully designed and validated on Zybo Z7-10 

(XC7Z010-1CLG400C) FPGA development board. The results show a 45% reduction in 

power consumption, delay, and area utilization. 

© 2024 Published by Faculty of Engineeringg  

 

 

 

 

1. INTRODUCTION  

 

The implementation of asynchronous floating-point 

adders has yet to be studied in this work. Most studies 

mainly concentrate on the performance of asynchronous 

floating-point operations such as multiplication and 

division (Jaiswal, 2014). This is because of the 

difficulties involved in implementing an Floating Point 

Adder (FPA). Mantissa shifting for matching the 

exponent, aligned mantissa addition, rounding, and 

normalization of the output calculated with different 

latencies are some of the operations involved during 

floating-point accumulation. Since the synchronous 

FPA estimates the frequency of the clock depending on 
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the worst-case delay, there is no necessity to worry 

about the process completion because any process can 

terminate before or within the worst-case delay. 

 

On the other hand, completing the process early can 

improve the addition function from 60% to 90% 

(Jaiswal, 2015). By substituting the clock pulse with 

REQ as well as ACK signals, an asynchronous floating-

point adder takes the benefit of early completion 

detection. It thereby minimizes the time required for 

processing from worst-case to average-case delay. The 

contemporary Asynchronous Floating-Point Adder 

(AFPA) design presented by Noche as well as Jose 

(Jaiswal, 2016), Sheikh as well as Manohar (Savas, 

2017), Jun, as well as Wang (Sangeetha, 2018 and 

Hiratkar 2016), is addressed in the following section; 

these are the only architectures presented in the research 

work that explains the implementation of AFPA design. 

The MTNCL technique presented in (Havaldar, 2016) 

provides no information regarding the AFPA 

implementation. This technique is included in the work 

because it compares the efficiency of floating-point 

operations such as addition and subtraction for 

asynchronous and synchronous floating-point 

processors.  

 
Single-Precision AFPA: Noche and Jose (Spoorthi, 

2020) presented a variable latency approach for 

implementing a single-precision Asynchronous 

Floating-Point Unit (AFPU) which is discussed in this 

section. All existing floating-point units' 

implementations are primarily concentrated on 

multiplication or division operations. Initially, this 

design presents the asynchronous implementation of a 

single-precision floating-point adder (Spoorthi, 2020), 

including additional arithmetic operations. The data 

path, as well as the control path in this design, makes 

use of dual-rail differential cascode voltage switch 

(DCVS) logic as well as complementary metal-oxide-

semiconductor (CMOS) logic, respectively. To build as 

well as to test the arithmetic unit, Cadence software is 

utilized. The AFPU is constructed at the transistor level 

using a 3.3 V supply voltage with a 0.35 um process. 

The AFPU performance for addition operations is 

discussed in this research work. The primary elements 

of the data path considered for addition operations are 

registers and adders. Bidirectional shift registers, and a 

rounding bit, are often employed to design the shifter 

circuit and are essential for normalization and matching 

the exponent (Malkapur, 2020). 

 

9-bit Carry Lookahead Adders (CLA) is used to develop 

an adder necessary for determining the exponent 

difference, whereas 25-bit is used to create an adder 

necessary for deciding mantissa addition (Ushasree, 

2013). To choose inputs for registers and adders, the 

DCVS multiplexers are often utilized. However, if the 

dual-rail inputs are not active, then OR gates can be 

used to optimize the design. Logic gates, SR latches, 

and C-elements are present in the AFPU's control 

circuitry (Wang 2019). 

 

1.1 Operand-Optimized Double-Precision AFPA 

 

Even though the time required for processing excludes 

the time needed for computing the rounding logic, 

Noche, as well as Joes, claim to minimize the time 

needed for completing the process of single-precision 

AFPA (Malkapur, 2020). Furthermore, the architecture 

does not employ any other energy-saving strategies 

because it is entirely non-pipelined. Many asynchronous 

pipelining approaches optimize performance (Wang 

2019 and Wang 2019). Pipelining is a strategy in which 

several operations are run concurrently for distinct data 

values to maximize the output. As stated in this section, 

Sheikh and Manohar (Zeng, 2015) developed an 

operand-optimized Double-Precision AFPA (DPAFPA) 

with all four-rounding logic. 

 

The DPAFPA's performance was compared to that of a 

high-performance baseline AFPA, with the following 

operating parameters: In a 65 nm bulk CMOS process at 

the typical- typical (TT) corner, the temperature was 

found to be 25 
o
C with a supply voltage of 1 V. The 

standard AFPA employs a 56-bit Hybrid Kogge Stone 

Carry Select Adder (HKSCSA) to add mantissa to add 

mantissa. The adder produces two tentative sum outputs 

for two distinct carry-in values and based on the actual 

carry-in value, the final production is chosen at the last 

stage. The dual-rail protocol is utilized with 1-of-4 

encoding and radix-4 arithmetic to maximize the energy 

and speed constraints. The Leading One Predictor 

(LOP) methodology is used for normalization and 

addition operation. The LOP estimates the shift amount, 

and the end outcome must be slightly shifted if the 

predicted shift amount is incorrect. To normalize the 

summation result, the data path is categorized into two 

pipelines, i.e., Left and Right. Whenever a significant 

left shift is expected due to a subtraction operation, the 

left pipeline is utilized, and the proper channel is used in 

all other situations. Thirty pipeline phases are employed 

in data paths with a minimum latency increase. In the 

case of all data computations, the pre-charge enable 

half-buffer (PCEHB) pipeline is used, which is quicker 

as well as more energy-efficient than the actual pre- 

charge half-buffer (PCHB) pipeline. Additionally, it 

employs the weak condition half-buffer (WCHB) for 

simple buffers and tokens, even though PCEHB is more 

energy efficient. 

  

It also demonstrates that addition consumes the most 

power after the proper shift operation. When compared 

to baseline AFPA, the DPAFPA design presented by 

Sheikh showed enhanced power savings by 

incorporating the following modifications: 

1. An interleaved asynchronous adder is substituted 

for HKSCSA, which employs two radix-4 ripple-

carry adders. Simultaneously both the ripple-carry 

adders work for various input operands; even odd 
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operand pairs are added by one adder, whereas odd 

and another adder adds even operand pairs case of 

radix-4 arithmetic, the maximum carry-chain length 

for around 90% of scenarios is 7. At the same time, 

an interleaved adder's energy or operation 

requirement is 2.9 pJ/op for carrying distances 

below 15, and the bandwidth required is 2.2 GHz. 

On the other hand, the 56-bit adder (HKSCSA) 

employed by a standard FPA requires 13.6 pJ/op 

and seems to have a throughput of 2.17 GHz. As a 

result, in contrast to HKSCSA, an interleaved adder 

minimizes power usage by more than four times. 

Interleaved adders also lower the number of 

transistors utilized for a 56-bit adder by 35%. 

2. The right shifter is made up of three pipeline stages: 

Stage 1, stage 2, as well as stage 3, shifts the 

mantissa from 0 to 3 bits, 0, 4, 8, or 12 bits, as well 

as by 0, 16, 32, or 48 bits respectively. In standard 

AFPA, the calculation time of the shifter to shift the 

mantissa from 0 - 55 bits are constant. The long path 

and short path are the two different paths of the 

shifter in the architecture of AFPA presented by 

Sheikh. This enables the shifter to choose one way 

based on the number of shifts and skip the other. The 

shifter's architecture is based on data and can reduce 

power consumption.  

3. One pipeline, either left or right, is utilized for 

normalization in the modified technique of LOP. 

Before setting the LOP phase, one must choose 

which channel to use, i.e., left or right. Compared to 

standard AFPA, the left channel saves up to 13% 

power, and the proper channel can save up to 18%. 

4. The rounding operation, 53-bit mantissa 

incrementor, left/right 1-bit shifter, as well as 

computation of the final value of the exponent, are 

all managed by the post-add proper pipeline. In 

contrast to the carry-select incrementor used by the 

standard AFPA, the DPAFPA architecture 

incorporates an interleaved incrementor analogous to 

an interleaved adder. This improves the energy 

efficiency of DPAFPA. 

5. The zero input operands are detected by the 

architecture. When one or both operands are zero, 

the final result can be computed rather than utilizing 

the AFPA's power-consuming chunks. 

 

When contrasted to the standard AFPA that requires 

69.3 pJ/op, the suggested DPAFPA design consumes 

30.2 pJ/op, resulting in a 56.7% drop in energy 

consumption. DPFPA's efficiency is also contrasted 

with Quinnell's synchronous FPA, which is regarded as 

one of the rarely designed fully implemented FPA that 

provides a reasonable standard for examining DPFPA's 

performance. A standard-cell library and a 65 nm SOI 

(Silicon-On-Insulator) technology were used to design 

the synchronous FPA. Table 1 compares the 

performance of DPAFPA, standard FPA, and the 

synchronous design of FPA proposed by Sheikh and 

Manohar. The efficiency of a floating-point unit is 

measured in GFLOPS (gigaflops) (FLOPS— floating-

point operations per second). The suggested DPFPA 

seems to have a high GFLOPS/W, enabling the 

asynchronous design strategy appropriate for improving 

the circuit's performance. Only non-zero operands are 

evaluated in the input set for standard AFPA and 

DPFPA for correct shift values varying from 0 to 3.  

 

The circuit's power consumption can be minimized by 

the application of interleaved adders as well as shifters. 

The shifter design is divided and deployed using 

pipelines, reducing the circuit's processing time and 

power consumption. AFPA is designed and tested using 

PRISM, which is regarded as a gate-level simulation 

tool that employs 10 billion random input operands, 

including one billion archived inputs from an original 

application standard. Exceptions such as NaN, Zero, 

Infinity, and Denormal numbers are also evaluated in 

the design. The implementation of DPAFPA primarily 

concentrates on minimizing the power consumption and 

energy or operation with the application of pipelining 

approach along with reduced processing time. 

 

1.2 Double-Precision AFPA with Operand-

Dependent Delay Elements 
 

The technique of desynchronization outperforms the 

synchronous architecture and can be utilized for 

designing AFPA. On the other hand, during 

resynchronization, the clock signal is substituted by 

worst-case delay models; therefore, it cannot benefit 

from the event-driven feature of asynchronous circuits. 

In the speed of various sub-operation necessary for 

executing floating-point addition and an AFPA design 

with operand-dependent delay components is evaluated. 

The standard synchronous FPA proposed in with the 

FAR/CLOSE path structure has introduced a balanced 

56-bit shifter with LOP and rounding by injection 

approach. Xu and Wang updated this synchronous FPA 

to take advantage of its event-driven nature by using 

asynchronous logic with variable-length delay 

components. Several AFPA sub-operations involving 

various calculation times must be determined to choose 

the delay models. Minimum six operations have been 

recognized and are processed at multiple speeds. 

 

1.3 Multi-Threshold NULL Convention Logic 

(MTNCL) 

 

A Multi-Threshold NULL Convention Logic (MTNCL) 

or Sleep Convention Logic (SCL) has been developed 

by Liang et al. in which is an integration of Multi-

Threshold CMOS (MTCMOS) as well as NULL 

Convention Logic (NCL). Low Vt, i.e., high leakage 

current, rapid speed, and high Vt, i.e., low leakage 

current, slow pace, the transistors with various threshold 

voltages (Vt) are used in MTCMOS. To retain 

efficiency with minimal leakage, low Vt and high Vt are 

integrated with the design of MTCMOS. Once the 

circuit is not functioning, the MTCMOS enters into 

sleep mode and thereby helps in consuming minimal 
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power. On the other hand, sustaining sleep signals 

necessitates complex logic due to the time requirements 

as the synchronous circuits render the problem of 

transistor sizing and logic block partitioning. NCL, on 

the other hand, employs an asynchronous dual-rail 

design, which necessitates the application of two wires 

to compute a single bit, as well as a spacer or NULL 

signal, as seen in Figure 6. When MTCMOS and NCL 

are combined in MTNCL, the circuit can use sleep 

mode during NULL logic without worrying about the 

clock issues. The power-gating high Vt transistor is 

introduced in the pull-down network, which modifies 

the MTNCL architecture. The Static MTNCL threshold 

gate structure (SMTNCL) removes two bypass 

transistors and eliminates the output wake-up glitch.  

 

In the case of single-precision floating-point co-

processors, Liang et al. compared synchronous 

MTCMOS design with various NCL designs. The 

efficiency of co-processors is presented for operations 

such as addition, subtraction, and multiplication. So, 

only adding and subtraction operations performance is 

talked about in this research work. To handle data and 

NULL, an average time TDD is used by the MTNCL 

circuits, which is analogous to the synchronous clock 

period. Since the designs of multi-threshold do not offer 

any specific AFPA architecture, they are also included 

in this survey research due to the limited availability of 

AFPA literature. Table 2 shows that the comparison is 

limited to simple NCL designs (Low and High Vt), the 

optimum MTNCL design, and a synchronous MTNCL 

design. To explain the claimed optimal MTNCL 

(SMTNCL with SECRII w/o nsleep) design, it would be 

necessary to have a basic knowledge of existing 

SMTNCL architectures. The Early Completion Input-

Incomplete (ECII) characteristic of MTNCL's 

fundamental architecture sets a process to sleep when all 

its inputs are NULL. To minimize power dissipation, a 

modified architecture called SECII sets the NCL 

circuit's combinational logic to sleep during the NULL 

cycle. When the circuit is not active, another form 

known as SECRII sets the completion, registration 

logic, and combinational logic to sleep. When such an 

SMTNCL circuit is integrated with bitwise MTNCL, the 

nsleep signal is no longer required, offering the 

SMTNCL a SECRII w/o nsleep design. When compared 

to synchronous MTCMOS design, the architecture 

proposed by Liang et al. found that this architecture was 

simulated for 25 sets of randomly selected floating-

point integers. It utilized less than 86% of energy, three 

orders of magnitude less idle power, and 14% less area, 

and speed is slower, not less than 2.  

 

2. LITERATURE SURVEY 
 

Recently, there has been an increasing demand by users 

for DSP processors that perform efficiently. Therefore, 

hardware capable of processing high-speed signals and 

performing arithmetic floating-point operations is 

required to fulfill this requirement or demand. Initially, 

fixed-point algorithms were used in large numbers for 

implementing the algorithms on FPGA. Implementing 

floating points on Field Programmable Gate Array is 

considered one of the developing fields with recent 

advancements because FPGA development consumes 

less time and costs less, unlike the ASIC design. In this 

research work, we develop single and double-precision 

floating-point arithmetic operations. The same has been 

deployed on Field Programmable Gate Array for signal 

processing with the module of MAC through Verilog 

programming language. The primary aim of this work is 

to evaluate the area and the timing of floating-point 

units (FPUs) and the MAC units with single and double 

precision. On the Spartan 6 FPGA, the presented model 

is simulated and implemented (Ramesh, 2013). 

 

In the case of floating-point (FP) multipliers, the 

hardware architectures based on FPGA are introduced 

in this research work. The deployment of single-

precision (SP), double precision (DP), double-extended 

precision (DEP), as well as quadruple precision (QP) 

are all possible with the presented multiplier 

architectures. The conventional computational flow for 

floating-point multiplication is addressed in this 

research work. With the application of efficient 

Karatsuba methodology, the floating-point 

multiplication has been carried out for the complex 

module, i.e., mantissa multiplications, thereby 

enhancing the application of available in-built 25x18 

DSP48E blocks on Xilinx Virtex-5 as well as on later 

FPGA devices. Compared to other conventional 

techniques, the proposed architecture shows enhanced 

performance with 1 DSP48 for SP, 3 DSP48 for DP, 6 

DSP48 for DEP, and 18 DSP48 for QP multipliers 

(Ramesh, 2013). 

 

This research presents a novel approach for dividing 

floating-point numbers depicted in the format of IEEE-

754 single-precision (binary32). The suggested 

technique mainly relies on a multiplier as well as an 

inverter which is deployed as the integration of 

Parabolic Synthesis as well as second-degree 

interpolation. The proposed method is synthesized on a 

Xilinx Ultrascale FPGA and is independently 

implemented with or without pipeline stages. The 

proposed implementations show enhanced resource 

usage and latency performance compared to 

conventional methods. The suggested approach 

performs better than traditional techniques in terms of 

throughput; furthermore, a few Altera FPGAs achieve 

higher clock rates owing to variations in the DSP slice 

multiplier design (Mehta, 2013).  

 

A floating-point number can simultaneously develop a 

high level of precision and a wide range of numbers. 

Floating-point multiplication is widely used in a variety 

of scientific and technological computations. Rapid, as 

well as efficient multipliers with a relatively small area 

as well as reduced power consumption, are required. In 

this research work, developing an IEEE-754 format 
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multiplier using Vedic Urdhva - Tiryagbhyam math 

concepts to support single-precision and double-

precision format floating-point numbers has been 

carried out. The floating-point Multiplier presented in 

this framework handles overflow, underflow, and 

rounding. The presented work and traditional floating-

point multipliers are based on Vedic mathematics, 

written in Verilog programming language, synthesized, 

and tested using the ISE Simulator (Defour, 2019).  

 

A semi-parallel iterative decimal multiplier is presented 

in this research work. Compared to other conventional 

implementations presented in position, the proposed 

Multiplier employs BCD-8421 encoding, and recoding 

is not required for this framework. A new iterative 

partial product reduction technique, as well as semi-

parallel partial product generation for faster 

multiplication, is employed in this work; a decimal 4:2 

Adder is employed for partial product reduction. The 

proposed semi-parallel iterative design is implemented 

and validated using FPGA, and the results demonstrate 

that the proposed work outperforms with reduced delay 

in contrast to that of decimal multipliers and binary 

multipliers with double precision have been discussed in 

this research work (Kiran, 2017).  

 

Several optimization methodologies have been 

presented in this research work for the algorithms based 

on a look-up table for double-precision floating-point 

arithmetic. The fundamental blocks of algorithms such 

as Multiplier (s) as well as an adder(s)) are re-

engineered to enable the area's advantages and timing to 

operate efficiently based on evaluating various look-up 

table-based algorithms in the literary work. We design 

different look-up table optimization techniques for the 

algorithm proposed. In the double-precision floating-

point module, we look at the trade-offs of exact 

rounding (0.5ulp) (unit in the last place). We utilize 

Wong and Goto's algorithms as a basic model to 

substantiate our optimization methods. The proposed 

algorithm's performance is compared with other 

algorithms based on performance and scalability 

metrics. The accuracy, i.e., the latency area of the Wong 

and Goto division algorithm, is enhanced by 26.94 

percent (Merchant, 2016). 

 

The most basic function in arithmetic modules is binary 

addition, and the Adder is considered the processor's 

essential arithmetic component. Full Adder is one of the 

critical features in Digital Signal Processing (DSP) 

architecture, microprocessor microcontroller 

applications, and data processing modules. Parallel 

multipliers are often used to accomplish better 

processing speeds at the cost of increased area 

efficiency.  The performance comparison of various Full 

adder cells based on the transistor count is presented in 

this research work.  This framework uses a cadence tool 

with 180nm technology and a 4-bit, 8-bit Braun 

multiplier architecture for effective layout 

implementation (Zhang, 2019).  

The perception of power-efficient multipliers is used in 

this research work. It is considered one of the essential 

parts of all VLSI system designs because they offer high 

speed with low power consumption, which is one of the 

essential concerns for any VLSI design. With the help 

of shift and add techniques, an adaptive implementation 

of a high-speed, low-power multiplier is presented in 

this research work. This paper also presents the 

performance of the Braun multiplier and the Wallace 

Multiplier using the Cadence (Encounter) RTL 

Compiler along with simulation, which further involves 

developing the Test circuit for every module integrated 

to form the Multiplier. The Braun multiplier, as well as 

the Wallace multiplier, are modeled by designing a 

circuit diagram for each of the building blocks like the 

AND, OR, NOT, EXOR gates, Half Adder, as well as 

Full Adder, as well as evaluating each of the above 

blocks with a test circuit in this work. Further, with the 

help of the Cadence tool, these test circuits are 

simulated and synthesized (Oh, 2005).   

 

Multipliers are essential in analog applications. Artificial 

neural networks, image processing, and modulators are 

some multipliers' applications. With the help of the 

Exponential Approximation circuit, the performance 

evaluation and implementation of low power and low 

andOS analog Multipliers are presented in this research 

work. MOSFETS are often used in this setup to 

accomplish low power dissipation by functioning in a 

weak inversion region. The Multiplier comprises four 

Exponential approximation circuits that execute on a 0.5V 

supply. Tanner tool uses 180nm technology to produce 

results and simulations (Oh, 2005).  

 

Optimization of the area and a significant decrease in 

power consumption are essential factors for designing 

and implementing the DSP processor. The Finite 

Impulse Response Filter is considered one of the most 

critical components in the design and deployment of a 

DSP processor. Adder blocks, flip flops, and multiplier 

blocks are the three fundamental components of the 

Finite Impulse Response (FIR) Filter. Array and Booth 

multiplier were used to develop the Finite Impulse 

Response Filter and were compared with various 

constraints. The recommended filters are written in 

Verilog HDL programming language and executed with 

the help of Xilinx 14.7 ISE tools. Development has been 

seen for the area and delay (Jalaja, 2016).  

 

This research mainly concentrates on a fixed-width, 

parallel multiplier design where the partial product 

array's eight least significant columns are compressed. It 

accepts two n-bit numbers as input, and the output 

obtained is the n-bit product. The Baugh-Wooley 

Multiplier is recommended in the case of 2's 

complement multiplication. Three multiplication units 

are used in the design to achieve a specified output. The 

combinational blocks are used in all of these units. The 

delay is successfully reduced through the parallel 

operation. The high efficiency of the circuit is driven by 
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substituting the inefficient design elements with 

efficient ones. Simulation is used to test the design's 

functionality (Jaiswal, 2014).  

 

The deployment of 4 distinct 32-bit multiplier architectures 

is discussed in this research work, and the comparative 

study of multipliers' applications, speed, area, and power 

has been discussed. Booth multiplier, Wallace Tree 

Multiplier, Vedic Multiplier, and Dadda Multiplier are the 

four different multipliers defined in this work. Verilog 

programming language is used to develop and execute the 

multipliers, and the Xilinx ISE tool is used to synthesize the 

code. An enhanced version of the tree-based Multiplier is a 

Wallace tree multiplier. To minimize latency, the Wallace 

tree multiplier uses the Carry-Save addition algorithm. The 

basis of the Vedic Multiplier is Vedic mathematics. In 

Vedic multiplication, there are 16 tantras, with "Urdhva 

Tiryakbhyam" proving to be the best sutra (Jaiswal, 2015).  

 

One of the significant parts of reducing the consumed 

power in VLSI systems is reducing the minimum supply 

requirements. A high-performance capacitance multiplier 

introduced in this research work can operate with supplies 

as low as ±0.25 V. It is designed on dynamically biased 

class-AB current mirrors to achieve maximum current 

efficiency. Conceptual assertions represented by the 11 

capacitance multiplier factor measurements are 

manufactured in 180-nm CMOS technology. Furthermore, 

the same CMOS process is used to design and fabricate 

low-voltage precision rectifiers depending on similar class-

AB current mirrors. Compared to quiescent currents, the 

produced output currents are 100 times greater (Jaiswal, 

2016).  

 

A unique low-power multiplication algorithm, as well as 

the architecture of VLSI, are presented in this research 

work. The proposed algorithm is simple and successively 

utilizes a 2n-1 constant number for multiplicand and a 

multiplier to determine NxN unsigned binary number 

multiplication. Compared to the traditional Multiplier, the 

proposed Multiplier illustrates that the reusability of 

hardware resources results in reduced power consumption 

and improves power delay products. The experimental 

results are further compared with the traditional Multiplier 

and a constant multiplier based on the result analysis of 

retiming. The proposed framework is structurally 

substantiated and synthesized using cadence EDA tools 

and has been deployed using 45nm technology libraries 

(Savas, 2017).  

 

A standard stopband filter along with a complementary-

defected ground structure (DGS) is presented in this work. 

The filter employs two distinct DGS patterns: On both 

sides of the filter, a Π -shaped DGS pattern is used, and in 

the middle, a button-headed H-shaped DGS pattern is used. 

Mutual inductance and mutual capacitance are employed 

between DGS patterns by the filter to enhance the filter's 

in-band gain-flatness, which is further beneficial for 

extending the bandwidth and improving the rejection ratio 

at low cut-off frequencies. The differential signal under the 

DGS filter is approximately stable, as welandommon-

mode noise can be significantly lowered by 15 dB from 3.2 

to 12.4 GHz as per the measured welandated results 

(Sangeetha, 2018). 

The Karatsuba algorithm is used to develop an effective 

floating-point multiplier in this research work. 

Multiplications consume time as well as power and are 

used extensively in digital signal processing algorithms 

as well as in media applications. IEEE 754 format is 

used to represent floating-point numbers in binary form.   

The algorithm of Karatsuba multiplication is not 

dependent on the pipelined design and is implemented 

using Verilog HDL. Significant accumulation, the sign 

bit, and exponent arithmetic operations are implemented 

using this Multiplier. The design employs three 

pipelining stages with an 8-clock cycle latency  

(Hiratkar, 2016).  

 

In the case of any modern computing system, floating-

point multiplication is considered one of the vital 

components. The architecture of a customizable dual-

mode double-precision floating-point multiplier that can 

handle two-parallel single-precision multiplication is 

introduced in this research work. This centralized 

double-precision dual (two-parallel) single-precision 

structure is the DPdSP Multiplier. The proposed 

framework is based on a typical advanced floating-point 

multiplication flow that can handle both standard and 

sub-normal operands, thereby presenting the ability of 

exceptional case handling. The suggested framework is 

typically implemented as an ASIC (UMC 90nm). 

Compared to conventional techniques, the proposed 

framework shows enhanced performance in terms of 

area, time, area×period, and throughput complexity 

measurements. By providing extra computation 

assistance, the proposed dual-mode architecture 

improves the measurements of the design (Havaldar, 

2016).  

 

Since the integer representation would no longer be 

feasible for representing very small or large values, an 

extensive range is necessary. The floating-point picture 

based on the IEEE-754 standard can depict these values. 

The IEEE 754-2008 standard is employed to implement 

a high-speed ASIC implementation of a floating-point 

arithmetic module that can execute addition, division 

subtr, action, and multiplication functions on 32-bit 

operands. The pre-normalization and post-normalization 

modules and exceptional handling ability are also all 

addressed in this research work. With the help of 

Verilog HDL, the proposed algorithms are designed as 

well as the Adder, subtractor, Multiplier, and divider, as 

well as square root's RTL code for is synthesized 

through Cadence RTL compiler, and the proposed 

architecture is intended for 180nm TSMC technology 

(Spoorthi, 2020).  

 

In the case of the Floating Point (FP) division, this 

research work introduces a dynamically configurable 

and area-efficient multi-precision architecture. In the 
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technological and scientific areas, the division of 

floating-point FP is considered one of the fundamental 

computations. The double-precision (DP) division that 

can process dual (two-parallel) as well as single-

precision (SP) computations are carried out by the 

DPdSP FP divider proposed in this work. The proposed 

design was primarily based on calculating division on 

series expansion strategy. We used 0.18m technology 

ASIC application with "OSUcells Cell Library" to 

monitor the proposed framework. The presented 

structure showed enhanced performance for throughput 

and area with the product of site and delay (Malkapur, 

2020).   

 

A unique adaptable multiple-precision multiply-

accumulate (MAC) module for deep neural network 

training and inference is introduced in this research 

work. The MAC module supports some of the 

operations, such as fixed-point and floating-point. The 

presented module facilitates one 16-bit MAC operation, 

two 8-bit multiplications sum, and a 16-bit addend in 

floating-point format. The exponent's bit-width, as well 

as mantissa, can be efficiently replaced to make the 

MAC module to be more flexible. The suggested MAC 

module also facilitates fixed-point operations by 

defining the exponent's bit-width to zero. The MAC 

module of the proposed work can also be subdivided to 

assist four 4-bit multiplications as welandbit addend. 

The presented module of MAC enables accumulating 

eight 1-bit logic AND operations with minimum 

accuracy to help binary neural networks. The suggested 

unit of MAC offers greater flexibility with 21.8% 

computation complexity compared to a typical MAC 

module with 16-bit half-precision (Ushasree, 2013).  

 

The implementation of hardware for analyzing arbitrary 

roots of a single-precision floating-point number is 

described in this research work. The implemented 

structure is primarily based on the GH CORDIC 

algorithm (Generalized Hyperbolic Coordinate Rotation 

Digital Computer). The system proposed in this work 

can determine the Nth root (Nx2) of a single-precision 

floating-point number using various floating-point 

numbers. Several measurements, such as precision, 

power consumption, efficiency comparison, and many 

more, were conducted after the successful 

implementation of the structure. However, according to 

the results obtained, the suggested technique determines 

the Nth root of a positive single-precision floating-point 

number along with a relative error of about 10 to 7. It 

thereby presents an error-flattening output (Wang, 

2019).  

 

To speed up media and data streaming, the floating-

point module in a CELL processor's synergistic 

processor unit uses a fully pipelined 4-way SIMD 

module. This module aims to maximize the efficiency 

of critical single-precision multiply-add operations by 

assisting 32-bit single-precision floating-point and 16-

bit integer operands with two distinct latencies. It 

consumes less power by making use of fine-grained 

clock gating. The architecture, logic, circuits, and 

implementation are co-designed to fulfill the parameters 

such as performance, energy, and area (Wang, 2019).  

In the computations of various scientific and signal 

processing, the Floating Point (FP) multiplication has 

been extensively used, and expansion is considered one 

of the widely accepted arithmetic operations. 

Furthermore, the suggested model proposed in this work 

is compatible with IEEE-754 and thus can manage 

overflow, underflow, rounding, and a variety of 

exception scenarios. The structure accomplished a 

frequency of 414.714 MHz with 648 slices area (Zeng, 

2015).   

 

The exponential function is effectively computed with 

the help of double-precision numbers only when 

rounding is correctly performed. The exponential 

function must be determined with high precision to 

achieve the accurately rounded exponential with some 

arguments, and sometimes higher accuracy is required 

for small ideas. This research work introduces small-

argument algorithms that are simple as well as fast. The 

proposed algorithm is integrated with other 

conventional methods to ensure optimum and average 

processing time. With the help of double-precision 

arithmetic, all the suggested algorithms accurately 

compute rounded exponential functions for all the 

rounding modes. Predetermined tables are often 

employed in the argument reduction phase. These 

algorithms are implemented by writing the code in C 

language and are found to be user-friendly. 

 

3. PROBLEM STATEMENT 
 

Repeating-point addition and subtraction are frequently 

employed arithmetic operations in most research areas. 

There are very few research papers on the design of an 

asynchronous floating-point adder. The conventional 

AFPA designs use dual-rail coding, which necessitates a 

wide application area because they are faster and 

consume less power than their standard FPA 

counterparts. This research work compared several 

performance aspects with their respective baseline FPA 

with all four contemporary AFPA designs. Since all the 

current models have multiple performance parameters, a 

complete evaluation is impossible. 

 

On the other hand, the implementation of AFPA is the 

only design presented in this research work, and it 

demonstrates that the asynchronous methodology can 

enhance AFPA performance. It also explains the 

possible consequence of an AFPA developed using a 

bundled data protocol and a completion detection 

methodology. Based on the literature survey, power, 

area, and latency are more than existing methods. 
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4. PROPOSED DOUBLE PRECISION BASED 

ALU DESIGN 
 

The following process was carried out to implement a 

latency-effective pipelined hardware divider. Initially, 

the size of the Look-up table and MUL bit width 

information was determined by conducting an error 

analysis on the implemented divider architecture in 

cases 1 and 2. Further, we choose the best possible 

block size with the help of Look-Up Table size and 

MUL bit-width, which is determined from the essential 

information. At last, by using optimal block size as a 

reference, the architecture of the divider is developed. 

Fig. 1 and 2 illustrate that once the LUT is accessed in 

the very first process, value A is generated in the second 

phase. The total computational latency is increased 

because the two tasks are carried out one after the other. 

The implemented architecture parallelizes multiplication 

and Look Up Table access to effectively minimize 

latency. Jeong's algorithm can be modified to obtain the 

advantage of parallelism. 

 

 
   (2- AR) AP = (2 - 

 

  
  (   -    ) R) 

 

  
  (    -   ) P 

(1) 

It is possible to parallelize the LUT access for    as well 

as for multiplications (   -   )P as well as (   -    

)R.  Based on equation (1), the procedural steps are 

depicted in Figure 3. Jeong's algorithm has a latency of 

1 LUT C 3 MULs, whereas the algorithm presented in 

this work has a latency of 3 MULs. In comparison to 

Jeong's algorithm, the clustering framework enables one 

more multiplier. To exploit the advantage of 

parallelism, based on Singh's algorithm the following 

equation can be written: 

 

 
 (         –(1-AR))AP=(      

 

  
       

           – (1- 
 

 
  (   -    ) R)) 

 

  
  (    -   ) P.          (2)  

 

Figure 1. Block diagram of the proposed architecture 

DPFP division 

 

The multiplications (   -   )P as well as (   -    )P, 

and LUT access for 
 

  
 , can be carried out 

simultaneously. Figure 4 indicates the proposed 

procedural steps for exploiting parallelism. The 

algorithm proposed in this work possesses a latency of 4 

MULs along with another multiplier whereas, Singh's 
algorithm possesses a latency of 1 LUT C 4 MULs, 

whereas the proposed algorithm has a latency of 4 

MULs and as well as one multiplier.  

 

Since error analysis offers base data for determining the 

size of the Look-Up Table and base data for 

determining the bit widths of MULs, the proposed 

algorithm is essential for designing the architecture of 

the hardware divider. The error analysis for the above 

two scenarios is performed, and the optimal block size 

is determined in this section. 

 

Table 1 shows the comparison results of delay, area cost 

of the proposed strategy, and the existing pipelinable 

division algorithms. Each algorithm's overall delay or 

total area cost is derived by summing every pipeline 

iteration's delays or area costs. Table 1 shows that Case 

1 in the proposed methodology might approximately 

decrease the critical path time by 16 % and a 21% 

increase in hardware area compared to that of (Defour, 

2019). With a 45% increase in the hardware area, the 

proposed technique in Case 2 could minimize the 

critical path time by approximately 7% compared to that 

of (Kiran, 2017). In contrast to (Defour, 2019), the 

proposed strategy in Case 1 can minimize the depth of 

the pipeline by one step and possess the same delay 

(12.0) as that of (Defour, 2019) within a channel. This 

suggests that when contrasted to (Defour, 2019) with 

almost the same clock frequency, the proposed 

methodology in Case 1 can reduce the delay of the 

pipeline by 25%. 

 

 

Figure 2. Block diagram of the proposed architecture 

for DPFP of Multiplication 
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This outcome corresponds to the suggested approach in 

Case 2, which can further reduce the uncertainty of the 

channel by 20% when contrasted to (Kiran, 2017) at the 

same clock frequency. The proposed methodology in 

Case 2 minimizes the area's cost by 28% and has the 

same pipeline depth as that of (Defour, 2019) but with 

an 8% slower clock frequency. For precise evaluation, 

the suggested architecture was synthesized using a 

28nm process along with the Synopsys design compiler, 

and thereby the execution result was contrasted to that 

of existing models (Defour, 2019 and Kiran, 2017). The 

pipelined delay was reduced by 22% while increasing 

the area by 34% over (Defour, 2019), and these 

comparisons are illustrated in Table 2. Compared to 

(Kiran, 2017), Case 2 of the proposed algorithm reduces 

the pipeline delay by approximately 11% while 

increasing the area by 33%. The delay time reduction 

rate of Case 1 was increased from 16% to 22% when 

contrasted to that in (Defour, 2019), as well as the 

hardware area was increased from 21% to 34% and at 

last, the result comparisons of table 2, as well as Table 

1, are carried out. In contrast to (Kiran, 2017), the delay 

time reduction rate of Case 2 significantly improved 

from 7% to 11%, whereas the hardware area reduced 

from 45% to 33%. Therefore, compared to the existing 

algorithms (Defour, 2019) and (Kiran, 2017), the size of 

the hardware shown in table 1 and table 2 was enhanced 

equally by 33%.  

 
Power consumption is typically proportional to the 

area associated with it. Therefore, area-timing 

products (ATP) based on area as well as timing 

values are commonly utilized in domains similar to 

the one used in this work, as well as ATP outcomes 

are employed as indicators of power consumption 

(Havaldar, 2016), (Spoorthi, 2020). As a result, we 

used the ATP model to evaluate and analyze the 

preceding algorithms in terms of power consumption. 

The proposed algorithm's ATP outcomes are 

compared with the existing techniques (Defour, 2019) 

and (Kiran, 2017) and are illustrated in Table 4. ATP 

was determined in the first phase by categorizing 

LUT and the multiplier in 1 and two proposed 

scenarios. Since the delay time, as well as the power 

consumption of the two systems, is unique, the 

computation is accurate. According to the analysis of 

ATP, the power consumption of the suggested 

pipeline divider was approximately 37%. It was equal 

to a 33% increase in hardware size compared to 

conventional algorithms. It was concluded that power 

consumption and area are proportional to each other 

from these observations. The algorithm of the 

pipelined division was previously utilized in (Zhang, 

2019). There exists a lot of discrepancies between 

(Hao Zhang 2019) as well as the proposed approach. 

Computations of fractions and error analysis on 

double-precision accuracy are to be performed or not 

are some of the critical variations offered as well 

(Zhang, 2019). Whenever floating-point arithmetic is 

employed as a fraction estimation technique in 

(Zhang, 2019), the hardware size or operational 

frequency may be higher or lower than the 

recommended fixed-point arithmetic technique. 

 

5. COMPARISON WITH EXISTING 

MULTIPLICATION METHODS 
 

The quotient is generated by approximating the 

multiplicative algorithm with the application of 

hardware that integrates a floating-point multiplier and a 

LUT.   

 

Table.1 Comparison between the conventional adder and proposed ternary-based double precision floating point adder 

Adders Slices 
Delay 

(ns) 
FF’s 

Power 

(W) 

Slice 

LUT’s 

Area 

(Occupied 

Slices) 

Memory Frequency 

MHz 

(Spoorthi, 2020) 1140 2.87 2021 7.69m     

 (Srujana, 2020) 1047 11.15 1724 36.34m     

(Spoorthi, 2020) 1268 9.24 1536 0.4 µ     

 (Srujana,  2020) 992 82.21 4990 13.54m     

(Addanki, 2013) 1655 35.2 1642 0.6µ     

Proposed 

Ternary based 

double precision 

floating point 

adder 

892 1.340 1201 0.082 µ 629 3071 137KB 127.09 
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Table.2. Comparison between conventional multiplier and proposed Multiplier 

Multiplier 
Slices 

(area) 
LUT 

Delay 

(ns) 

Power 

(mW) 

Area* 

delay 

Time* 

power 
Area*time*power 

FF’s/ 

Memory 

Frequency 

(David, 

2019) 
12095 7620 8.4 1.56     

 

(Oh, 2005) 4520 9841 5.32 0.94      

Proposed 

ZP & 

FRBM 

3819 4951 3.841 0.088    2100/132 

 

 

Table.3 Comparison between conventional adder and proposed ternary based double precision floating point subtractor 

Adders Slices 
Delay 

(ns) 
FF’s 

Power 

(W) 

Slice 

LUT’s 

Area(Occupied 

Slices) 

Memory Frequency 

MHz 

Kogge-Stone 

(Spoorthi, 2020) 
7209 6.41 4821 0.97 3061    

Sklansky (Srujana, 

2020) 
5620 4.9 3875 2.40 2971    

Proposed Ternary-

based double 

precision floating 

point subtractor 

2820 3.841 2861 0.088 1672 1863 132 52.637 

 

Table.4. Comparison between conventional Division and proposed Division 

Multiplier 
Slices 

(area) 
LUT 

Delay 

(ns) 

Power 

(mW) 

Area* 

delay 

Time* 

power 
Area*time*power 

FF’s/Memory Frequency 

(Merchant, 

2016) 
4921 2901 7.81 1.45      

(Jalaja, 

2016) 
6320 1974 4.76 1.09      

Proposed 

ZP & 

FRBM 

2085 1864 3.84 0.082    2843/133 180.865MHz 

 

6. CONCLUSION 

 
Double precision floating-point addition and subtraction 

are frequently employed arithmetic operations in most 

research areas. There are very few research papers on 

the design of an asynchronous floating-point adder. The 

conventional AFPA designs use dual-rail coding, which 

necessitates a wide application area because they are 

faster and consume less power than their standard FPA 

counterparts. This research work compared several 

performance aspects with their respective baseline FPA 

with all four contemporary AFPA designs. Since all the 

current models have multiple performance parameters, a 

complete evaluation is impossible. On the other hand, 

the implementation of AFPA is the only design 

presented in this research work, and it demonstrates that 

the asynchronous methodology can enhance AFPA 

performance. It also explains the possible consequence 

of an AFPA developed using a bundled data protocol 

and a completion detection methodology. A unique low-

latency pipelined divider structural design for double-

precision numbers was developed in this research work. 

Compared to other existing techniques, the proposed 

architecture minimizes the pipeline's depth by one step. 

The algorithm presented in this work can also reduce 

the computational latency without increasing the size of 

the Look-Up Table and is implemented on two 

traditional divider architectures. The given divider 

architecture is more suitable for systems requiring 

double-precision division. 
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