

1
 Corresponding author: Nagarathna R

 Email: nagarathnatce@dayanandasagar.edu 903

Vol. 06, No. 3 (2024) 903-914, doi: 10.24874/PES06.03.002

Proceedings on Engineering

Sciences

www.pesjournal.net

DESIGN AND PERFORMANCE ANALYSIS OF

TERNARY LOGIC BASED ALU USING DOUBLE

PRECISION FLOATING POINT

 Received 25.10.2023.
Nagarathna R

1
 Received in revised form 26.11.2023.

A R Aswatha Accepted 07.01.2024.

UDC – 004.62

Keywords:

Digital Circuits, Ternary,

Floating point, ALU

A B S T R A C T

In digital circuits, particularly space signal applications, the detection/estimation of phase

(angle) like milli degree is challenging and involves many complex operations. To estimate

milli degree (10-3) or more, floating point operations (like double precision adders,

subtractions, multiplications, and divisions) are the significant components and power and

area consumption; delays are more in existing works. Existing works mainly concentrate

on clock-based synchronous operations, which require more hold, and clock distribution is

another major problem due to extra circuitry requirements. The proposed pipelined and

clock-efficient distribution system (CEDS) is incorporated in the Floating-Point Unit

(FPU) design to address these issues. It includes a double-precision adder, multiplication,

division, and subtraction. These FPU and CEDS can be used to detect Milli Degree for

GHz frequency in Space applications more accurately. The floating points are essential in

phase shift operation used in the space-borne system for effective correction of error

checking rather than execution of error analysis in the real-time scenario. Modern digital

circuits can hardly improve due to limitations of physical area consumption. The

substitution for these limitations, the new digital ternary logic (0, 1, 2), is the solution

because of its higher number of digital circuits involved in floating points. The ternary

logic is the best solution for the minimization of number bits to optimize memory

utilization, and ternary logic has Negative Ternary Inverter (NTI), Ternary Decrement

Cycling Inverter (DCI), Standard Ternary Inverter (STI,) and Positive Ternary Inverter

(PTI). The proposed design is successfully designed and validated on Zybo Z7-10

(XC7Z010-1CLG400C) FPGA development board. The results show a 45% reduction in

power consumption, delay, and area utilization.

© 2024 Published by Faculty of Engineeringg

1. INTRODUCTION

The implementation of asynchronous floating-point

adders has yet to be studied in this work. Most studies

mainly concentrate on the performance of asynchronous

floating-point operations such as multiplication and

division (Jaiswal, 2014). This is because of the

difficulties involved in implementing an Floating Point

Adder (FPA). Mantissa shifting for matching the

exponent, aligned mantissa addition, rounding, and

normalization of the output calculated with different

latencies are some of the operations involved during

floating-point accumulation. Since the synchronous

FPA estimates the frequency of the clock depending on

Nagarathna & Aswatha, Design and performance analysis of ternary logic based ALU using double precision floating point

 904

the worst-case delay, there is no necessity to worry

about the process completion because any process can

terminate before or within the worst-case delay.

On the other hand, completing the process early can

improve the addition function from 60% to 90%

(Jaiswal, 2015). By substituting the clock pulse with

REQ as well as ACK signals, an asynchronous floating-

point adder takes the benefit of early completion

detection. It thereby minimizes the time required for

processing from worst-case to average-case delay. The

contemporary Asynchronous Floating-Point Adder

(AFPA) design presented by Noche as well as Jose

(Jaiswal, 2016), Sheikh as well as Manohar (Savas,

2017), Jun, as well as Wang (Sangeetha, 2018 and

Hiratkar 2016), is addressed in the following section;

these are the only architectures presented in the research

work that explains the implementation of AFPA design.

The MTNCL technique presented in (Havaldar, 2016)

provides no information regarding the AFPA

implementation. This technique is included in the work

because it compares the efficiency of floating-point

operations such as addition and subtraction for

asynchronous and synchronous floating-point

processors.

Single-Precision AFPA: Noche and Jose (Spoorthi,

2020) presented a variable latency approach for

implementing a single-precision Asynchronous

Floating-Point Unit (AFPU) which is discussed in this

section. All existing floating-point units'

implementations are primarily concentrated on

multiplication or division operations. Initially, this

design presents the asynchronous implementation of a

single-precision floating-point adder (Spoorthi, 2020),

including additional arithmetic operations. The data

path, as well as the control path in this design, makes

use of dual-rail differential cascode voltage switch

(DCVS) logic as well as complementary metal-oxide-

semiconductor (CMOS) logic, respectively. To build as

well as to test the arithmetic unit, Cadence software is

utilized. The AFPU is constructed at the transistor level

using a 3.3 V supply voltage with a 0.35 um process.

The AFPU performance for addition operations is

discussed in this research work. The primary elements

of the data path considered for addition operations are

registers and adders. Bidirectional shift registers, and a

rounding bit, are often employed to design the shifter

circuit and are essential for normalization and matching

the exponent (Malkapur, 2020).

9-bit Carry Lookahead Adders (CLA) is used to develop

an adder necessary for determining the exponent

difference, whereas 25-bit is used to create an adder

necessary for deciding mantissa addition (Ushasree,

2013). To choose inputs for registers and adders, the

DCVS multiplexers are often utilized. However, if the

dual-rail inputs are not active, then OR gates can be

used to optimize the design. Logic gates, SR latches,

and C-elements are present in the AFPU's control

circuitry (Wang 2019).

1.1 Operand-Optimized Double-Precision AFPA

Even though the time required for processing excludes

the time needed for computing the rounding logic,

Noche, as well as Joes, claim to minimize the time

needed for completing the process of single-precision

AFPA (Malkapur, 2020). Furthermore, the architecture

does not employ any other energy-saving strategies

because it is entirely non-pipelined. Many asynchronous

pipelining approaches optimize performance (Wang

2019 and Wang 2019). Pipelining is a strategy in which

several operations are run concurrently for distinct data

values to maximize the output. As stated in this section,

Sheikh and Manohar (Zeng, 2015) developed an

operand-optimized Double-Precision AFPA (DPAFPA)

with all four-rounding logic.

The DPAFPA's performance was compared to that of a

high-performance baseline AFPA, with the following

operating parameters: In a 65 nm bulk CMOS process at

the typical- typical (TT) corner, the temperature was

found to be 25
o
C with a supply voltage of 1 V. The

standard AFPA employs a 56-bit Hybrid Kogge Stone

Carry Select Adder (HKSCSA) to add mantissa to add

mantissa. The adder produces two tentative sum outputs

for two distinct carry-in values and based on the actual

carry-in value, the final production is chosen at the last

stage. The dual-rail protocol is utilized with 1-of-4

encoding and radix-4 arithmetic to maximize the energy

and speed constraints. The Leading One Predictor

(LOP) methodology is used for normalization and

addition operation. The LOP estimates the shift amount,

and the end outcome must be slightly shifted if the

predicted shift amount is incorrect. To normalize the

summation result, the data path is categorized into two

pipelines, i.e., Left and Right. Whenever a significant

left shift is expected due to a subtraction operation, the

left pipeline is utilized, and the proper channel is used in

all other situations. Thirty pipeline phases are employed

in data paths with a minimum latency increase. In the

case of all data computations, the pre-charge enable

half-buffer (PCEHB) pipeline is used, which is quicker

as well as more energy-efficient than the actual pre-

charge half-buffer (PCHB) pipeline. Additionally, it

employs the weak condition half-buffer (WCHB) for

simple buffers and tokens, even though PCEHB is more

energy efficient.

It also demonstrates that addition consumes the most

power after the proper shift operation. When compared

to baseline AFPA, the DPAFPA design presented by

Sheikh showed enhanced power savings by

incorporating the following modifications:

1. An interleaved asynchronous adder is substituted

for HKSCSA, which employs two radix-4 ripple-

carry adders. Simultaneously both the ripple-carry

adders work for various input operands; even odd

Proceedings on Engineering Sciences, Vol. 06, No. 3 (2024) 903-914, doi: 10.24874/PES06.03.002

 905

operand pairs are added by one adder, whereas odd

and another adder adds even operand pairs case of

radix-4 arithmetic, the maximum carry-chain length

for around 90% of scenarios is 7. At the same time,

an interleaved adder's energy or operation

requirement is 2.9 pJ/op for carrying distances

below 15, and the bandwidth required is 2.2 GHz.

On the other hand, the 56-bit adder (HKSCSA)

employed by a standard FPA requires 13.6 pJ/op

and seems to have a throughput of 2.17 GHz. As a

result, in contrast to HKSCSA, an interleaved adder

minimizes power usage by more than four times.

Interleaved adders also lower the number of

transistors utilized for a 56-bit adder by 35%.

2. The right shifter is made up of three pipeline stages:

Stage 1, stage 2, as well as stage 3, shifts the

mantissa from 0 to 3 bits, 0, 4, 8, or 12 bits, as well

as by 0, 16, 32, or 48 bits respectively. In standard

AFPA, the calculation time of the shifter to shift the

mantissa from 0 - 55 bits are constant. The long path

and short path are the two different paths of the

shifter in the architecture of AFPA presented by

Sheikh. This enables the shifter to choose one way

based on the number of shifts and skip the other. The

shifter's architecture is based on data and can reduce

power consumption.

3. One pipeline, either left or right, is utilized for

normalization in the modified technique of LOP.

Before setting the LOP phase, one must choose

which channel to use, i.e., left or right. Compared to

standard AFPA, the left channel saves up to 13%

power, and the proper channel can save up to 18%.

4. The rounding operation, 53-bit mantissa

incrementor, left/right 1-bit shifter, as well as

computation of the final value of the exponent, are

all managed by the post-add proper pipeline. In

contrast to the carry-select incrementor used by the

standard AFPA, the DPAFPA architecture

incorporates an interleaved incrementor analogous to

an interleaved adder. This improves the energy

efficiency of DPAFPA.

5. The zero input operands are detected by the

architecture. When one or both operands are zero,

the final result can be computed rather than utilizing

the AFPA's power-consuming chunks.

When contrasted to the standard AFPA that requires

69.3 pJ/op, the suggested DPAFPA design consumes

30.2 pJ/op, resulting in a 56.7% drop in energy

consumption. DPFPA's efficiency is also contrasted

with Quinnell's synchronous FPA, which is regarded as

one of the rarely designed fully implemented FPA that

provides a reasonable standard for examining DPFPA's

performance. A standard-cell library and a 65 nm SOI

(Silicon-On-Insulator) technology were used to design

the synchronous FPA. Table 1 compares the

performance of DPAFPA, standard FPA, and the

synchronous design of FPA proposed by Sheikh and

Manohar. The efficiency of a floating-point unit is

measured in GFLOPS (gigaflops) (FLOPS— floating-

point operations per second). The suggested DPFPA

seems to have a high GFLOPS/W, enabling the

asynchronous design strategy appropriate for improving

the circuit's performance. Only non-zero operands are

evaluated in the input set for standard AFPA and

DPFPA for correct shift values varying from 0 to 3.

The circuit's power consumption can be minimized by

the application of interleaved adders as well as shifters.

The shifter design is divided and deployed using

pipelines, reducing the circuit's processing time and

power consumption. AFPA is designed and tested using

PRISM, which is regarded as a gate-level simulation

tool that employs 10 billion random input operands,

including one billion archived inputs from an original

application standard. Exceptions such as NaN, Zero,

Infinity, and Denormal numbers are also evaluated in

the design. The implementation of DPAFPA primarily

concentrates on minimizing the power consumption and

energy or operation with the application of pipelining

approach along with reduced processing time.

1.2 Double-Precision AFPA with Operand-

Dependent Delay Elements

The technique of desynchronization outperforms the

synchronous architecture and can be utilized for

designing AFPA. On the other hand, during

resynchronization, the clock signal is substituted by

worst-case delay models; therefore, it cannot benefit

from the event-driven feature of asynchronous circuits.

In the speed of various sub-operation necessary for

executing floating-point addition and an AFPA design

with operand-dependent delay components is evaluated.

The standard synchronous FPA proposed in with the

FAR/CLOSE path structure has introduced a balanced

56-bit shifter with LOP and rounding by injection

approach. Xu and Wang updated this synchronous FPA

to take advantage of its event-driven nature by using

asynchronous logic with variable-length delay

components. Several AFPA sub-operations involving

various calculation times must be determined to choose

the delay models. Minimum six operations have been

recognized and are processed at multiple speeds.

1.3 Multi-Threshold NULL Convention Logic

(MTNCL)

A Multi-Threshold NULL Convention Logic (MTNCL)

or Sleep Convention Logic (SCL) has been developed

by Liang et al. in which is an integration of Multi-

Threshold CMOS (MTCMOS) as well as NULL

Convention Logic (NCL). Low Vt, i.e., high leakage

current, rapid speed, and high Vt, i.e., low leakage

current, slow pace, the transistors with various threshold

voltages (Vt) are used in MTCMOS. To retain

efficiency with minimal leakage, low Vt and high Vt are

integrated with the design of MTCMOS. Once the

circuit is not functioning, the MTCMOS enters into

sleep mode and thereby helps in consuming minimal

Nagarathna & Aswatha, Design and performance analysis of ternary logic based ALU using double precision floating point

 906

power. On the other hand, sustaining sleep signals

necessitates complex logic due to the time requirements

as the synchronous circuits render the problem of

transistor sizing and logic block partitioning. NCL, on

the other hand, employs an asynchronous dual-rail

design, which necessitates the application of two wires

to compute a single bit, as well as a spacer or NULL

signal, as seen in Figure 6. When MTCMOS and NCL

are combined in MTNCL, the circuit can use sleep

mode during NULL logic without worrying about the

clock issues. The power-gating high Vt transistor is

introduced in the pull-down network, which modifies

the MTNCL architecture. The Static MTNCL threshold

gate structure (SMTNCL) removes two bypass

transistors and eliminates the output wake-up glitch.

In the case of single-precision floating-point co-

processors, Liang et al. compared synchronous

MTCMOS design with various NCL designs. The

efficiency of co-processors is presented for operations

such as addition, subtraction, and multiplication. So,

only adding and subtraction operations performance is

talked about in this research work. To handle data and

NULL, an average time TDD is used by the MTNCL

circuits, which is analogous to the synchronous clock

period. Since the designs of multi-threshold do not offer

any specific AFPA architecture, they are also included

in this survey research due to the limited availability of

AFPA literature. Table 2 shows that the comparison is

limited to simple NCL designs (Low and High Vt), the

optimum MTNCL design, and a synchronous MTNCL

design. To explain the claimed optimal MTNCL

(SMTNCL with SECRII w/o nsleep) design, it would be

necessary to have a basic knowledge of existing

SMTNCL architectures. The Early Completion Input-

Incomplete (ECII) characteristic of MTNCL's

fundamental architecture sets a process to sleep when all

its inputs are NULL. To minimize power dissipation, a

modified architecture called SECII sets the NCL

circuit's combinational logic to sleep during the NULL

cycle. When the circuit is not active, another form

known as SECRII sets the completion, registration

logic, and combinational logic to sleep. When such an

SMTNCL circuit is integrated with bitwise MTNCL, the

nsleep signal is no longer required, offering the

SMTNCL a SECRII w/o nsleep design. When compared

to synchronous MTCMOS design, the architecture

proposed by Liang et al. found that this architecture was

simulated for 25 sets of randomly selected floating-

point integers. It utilized less than 86% of energy, three

orders of magnitude less idle power, and 14% less area,

and speed is slower, not less than 2.

2. LITERATURE SURVEY

Recently, there has been an increasing demand by users

for DSP processors that perform efficiently. Therefore,

hardware capable of processing high-speed signals and

performing arithmetic floating-point operations is

required to fulfill this requirement or demand. Initially,

fixed-point algorithms were used in large numbers for

implementing the algorithms on FPGA. Implementing

floating points on Field Programmable Gate Array is

considered one of the developing fields with recent

advancements because FPGA development consumes

less time and costs less, unlike the ASIC design. In this

research work, we develop single and double-precision

floating-point arithmetic operations. The same has been

deployed on Field Programmable Gate Array for signal

processing with the module of MAC through Verilog

programming language. The primary aim of this work is

to evaluate the area and the timing of floating-point

units (FPUs) and the MAC units with single and double

precision. On the Spartan 6 FPGA, the presented model

is simulated and implemented (Ramesh, 2013).

In the case of floating-point (FP) multipliers, the

hardware architectures based on FPGA are introduced

in this research work. The deployment of single-

precision (SP), double precision (DP), double-extended

precision (DEP), as well as quadruple precision (QP)

are all possible with the presented multiplier

architectures. The conventional computational flow for

floating-point multiplication is addressed in this

research work. With the application of efficient

Karatsuba methodology, the floating-point

multiplication has been carried out for the complex

module, i.e., mantissa multiplications, thereby

enhancing the application of available in-built 25x18

DSP48E blocks on Xilinx Virtex-5 as well as on later

FPGA devices. Compared to other conventional

techniques, the proposed architecture shows enhanced

performance with 1 DSP48 for SP, 3 DSP48 for DP, 6

DSP48 for DEP, and 18 DSP48 for QP multipliers

(Ramesh, 2013).

This research presents a novel approach for dividing

floating-point numbers depicted in the format of IEEE-

754 single-precision (binary32). The suggested

technique mainly relies on a multiplier as well as an

inverter which is deployed as the integration of

Parabolic Synthesis as well as second-degree

interpolation. The proposed method is synthesized on a

Xilinx Ultrascale FPGA and is independently

implemented with or without pipeline stages. The

proposed implementations show enhanced resource

usage and latency performance compared to

conventional methods. The suggested approach

performs better than traditional techniques in terms of

throughput; furthermore, a few Altera FPGAs achieve

higher clock rates owing to variations in the DSP slice

multiplier design (Mehta, 2013).

A floating-point number can simultaneously develop a

high level of precision and a wide range of numbers.

Floating-point multiplication is widely used in a variety

of scientific and technological computations. Rapid, as

well as efficient multipliers with a relatively small area

as well as reduced power consumption, are required. In

this research work, developing an IEEE-754 format

Proceedings on Engineering Sciences, Vol. 06, No. 3 (2024) 903-914, doi: 10.24874/PES06.03.002

 907

multiplier using Vedic Urdhva - Tiryagbhyam math

concepts to support single-precision and double-

precision format floating-point numbers has been

carried out. The floating-point Multiplier presented in

this framework handles overflow, underflow, and

rounding. The presented work and traditional floating-

point multipliers are based on Vedic mathematics,

written in Verilog programming language, synthesized,

and tested using the ISE Simulator (Defour, 2019).

A semi-parallel iterative decimal multiplier is presented

in this research work. Compared to other conventional

implementations presented in position, the proposed

Multiplier employs BCD-8421 encoding, and recoding

is not required for this framework. A new iterative

partial product reduction technique, as well as semi-

parallel partial product generation for faster

multiplication, is employed in this work; a decimal 4:2

Adder is employed for partial product reduction. The

proposed semi-parallel iterative design is implemented

and validated using FPGA, and the results demonstrate

that the proposed work outperforms with reduced delay

in contrast to that of decimal multipliers and binary

multipliers with double precision have been discussed in

this research work (Kiran, 2017).

Several optimization methodologies have been

presented in this research work for the algorithms based

on a look-up table for double-precision floating-point

arithmetic. The fundamental blocks of algorithms such

as Multiplier (s) as well as an adder(s)) are re-

engineered to enable the area's advantages and timing to

operate efficiently based on evaluating various look-up

table-based algorithms in the literary work. We design

different look-up table optimization techniques for the

algorithm proposed. In the double-precision floating-

point module, we look at the trade-offs of exact

rounding (0.5ulp) (unit in the last place). We utilize

Wong and Goto's algorithms as a basic model to

substantiate our optimization methods. The proposed

algorithm's performance is compared with other

algorithms based on performance and scalability

metrics. The accuracy, i.e., the latency area of the Wong

and Goto division algorithm, is enhanced by 26.94

percent (Merchant, 2016).

The most basic function in arithmetic modules is binary

addition, and the Adder is considered the processor's

essential arithmetic component. Full Adder is one of the

critical features in Digital Signal Processing (DSP)

architecture, microprocessor microcontroller

applications, and data processing modules. Parallel

multipliers are often used to accomplish better

processing speeds at the cost of increased area

efficiency. The performance comparison of various Full

adder cells based on the transistor count is presented in

this research work. This framework uses a cadence tool

with 180nm technology and a 4-bit, 8-bit Braun

multiplier architecture for effective layout

implementation (Zhang, 2019).

The perception of power-efficient multipliers is used in

this research work. It is considered one of the essential

parts of all VLSI system designs because they offer high

speed with low power consumption, which is one of the

essential concerns for any VLSI design. With the help

of shift and add techniques, an adaptive implementation

of a high-speed, low-power multiplier is presented in

this research work. This paper also presents the

performance of the Braun multiplier and the Wallace

Multiplier using the Cadence (Encounter) RTL

Compiler along with simulation, which further involves

developing the Test circuit for every module integrated

to form the Multiplier. The Braun multiplier, as well as

the Wallace multiplier, are modeled by designing a

circuit diagram for each of the building blocks like the

AND, OR, NOT, EXOR gates, Half Adder, as well as

Full Adder, as well as evaluating each of the above

blocks with a test circuit in this work. Further, with the

help of the Cadence tool, these test circuits are

simulated and synthesized (Oh, 2005).

Multipliers are essential in analog applications. Artificial

neural networks, image processing, and modulators are

some multipliers' applications. With the help of the

Exponential Approximation circuit, the performance

evaluation and implementation of low power and low

andOS analog Multipliers are presented in this research

work. MOSFETS are often used in this setup to

accomplish low power dissipation by functioning in a

weak inversion region. The Multiplier comprises four

Exponential approximation circuits that execute on a 0.5V

supply. Tanner tool uses 180nm technology to produce

results and simulations (Oh, 2005).

Optimization of the area and a significant decrease in

power consumption are essential factors for designing

and implementing the DSP processor. The Finite

Impulse Response Filter is considered one of the most

critical components in the design and deployment of a

DSP processor. Adder blocks, flip flops, and multiplier

blocks are the three fundamental components of the

Finite Impulse Response (FIR) Filter. Array and Booth

multiplier were used to develop the Finite Impulse

Response Filter and were compared with various

constraints. The recommended filters are written in

Verilog HDL programming language and executed with

the help of Xilinx 14.7 ISE tools. Development has been

seen for the area and delay (Jalaja, 2016).

This research mainly concentrates on a fixed-width,

parallel multiplier design where the partial product

array's eight least significant columns are compressed. It

accepts two n-bit numbers as input, and the output

obtained is the n-bit product. The Baugh-Wooley

Multiplier is recommended in the case of 2's

complement multiplication. Three multiplication units

are used in the design to achieve a specified output. The

combinational blocks are used in all of these units. The

delay is successfully reduced through the parallel

operation. The high efficiency of the circuit is driven by

Nagarathna & Aswatha, Design and performance analysis of ternary logic based ALU using double precision floating point

 908

substituting the inefficient design elements with

efficient ones. Simulation is used to test the design's

functionality (Jaiswal, 2014).

The deployment of 4 distinct 32-bit multiplier architectures

is discussed in this research work, and the comparative

study of multipliers' applications, speed, area, and power

has been discussed. Booth multiplier, Wallace Tree

Multiplier, Vedic Multiplier, and Dadda Multiplier are the

four different multipliers defined in this work. Verilog

programming language is used to develop and execute the

multipliers, and the Xilinx ISE tool is used to synthesize the

code. An enhanced version of the tree-based Multiplier is a

Wallace tree multiplier. To minimize latency, the Wallace

tree multiplier uses the Carry-Save addition algorithm. The

basis of the Vedic Multiplier is Vedic mathematics. In

Vedic multiplication, there are 16 tantras, with "Urdhva

Tiryakbhyam" proving to be the best sutra (Jaiswal, 2015).

One of the significant parts of reducing the consumed

power in VLSI systems is reducing the minimum supply

requirements. A high-performance capacitance multiplier

introduced in this research work can operate with supplies

as low as ±0.25 V. It is designed on dynamically biased

class-AB current mirrors to achieve maximum current

efficiency. Conceptual assertions represented by the 11

capacitance multiplier factor measurements are

manufactured in 180-nm CMOS technology. Furthermore,

the same CMOS process is used to design and fabricate

low-voltage precision rectifiers depending on similar class-

AB current mirrors. Compared to quiescent currents, the

produced output currents are 100 times greater (Jaiswal,

2016).

A unique low-power multiplication algorithm, as well as

the architecture of VLSI, are presented in this research

work. The proposed algorithm is simple and successively

utilizes a 2n-1 constant number for multiplicand and a

multiplier to determine NxN unsigned binary number

multiplication. Compared to the traditional Multiplier, the

proposed Multiplier illustrates that the reusability of

hardware resources results in reduced power consumption

and improves power delay products. The experimental

results are further compared with the traditional Multiplier

and a constant multiplier based on the result analysis of

retiming. The proposed framework is structurally

substantiated and synthesized using cadence EDA tools

and has been deployed using 45nm technology libraries

(Savas, 2017).

A standard stopband filter along with a complementary-

defected ground structure (DGS) is presented in this work.

The filter employs two distinct DGS patterns: On both

sides of the filter, a Π -shaped DGS pattern is used, and in

the middle, a button-headed H-shaped DGS pattern is used.

Mutual inductance and mutual capacitance are employed

between DGS patterns by the filter to enhance the filter's

in-band gain-flatness, which is further beneficial for

extending the bandwidth and improving the rejection ratio

at low cut-off frequencies. The differential signal under the

DGS filter is approximately stable, as welandommon-

mode noise can be significantly lowered by 15 dB from 3.2

to 12.4 GHz as per the measured welandated results

(Sangeetha, 2018).

The Karatsuba algorithm is used to develop an effective

floating-point multiplier in this research work.

Multiplications consume time as well as power and are

used extensively in digital signal processing algorithms

as well as in media applications. IEEE 754 format is

used to represent floating-point numbers in binary form.

The algorithm of Karatsuba multiplication is not

dependent on the pipelined design and is implemented

using Verilog HDL. Significant accumulation, the sign

bit, and exponent arithmetic operations are implemented

using this Multiplier. The design employs three

pipelining stages with an 8-clock cycle latency

(Hiratkar, 2016).

In the case of any modern computing system, floating-

point multiplication is considered one of the vital

components. The architecture of a customizable dual-

mode double-precision floating-point multiplier that can

handle two-parallel single-precision multiplication is

introduced in this research work. This centralized

double-precision dual (two-parallel) single-precision

structure is the DPdSP Multiplier. The proposed

framework is based on a typical advanced floating-point

multiplication flow that can handle both standard and

sub-normal operands, thereby presenting the ability of

exceptional case handling. The suggested framework is

typically implemented as an ASIC (UMC 90nm).

Compared to conventional techniques, the proposed

framework shows enhanced performance in terms of

area, time, area×period, and throughput complexity

measurements. By providing extra computation

assistance, the proposed dual-mode architecture

improves the measurements of the design (Havaldar,

2016).

Since the integer representation would no longer be

feasible for representing very small or large values, an

extensive range is necessary. The floating-point picture

based on the IEEE-754 standard can depict these values.

The IEEE 754-2008 standard is employed to implement

a high-speed ASIC implementation of a floating-point

arithmetic module that can execute addition, division

subtr, action, and multiplication functions on 32-bit

operands. The pre-normalization and post-normalization

modules and exceptional handling ability are also all

addressed in this research work. With the help of

Verilog HDL, the proposed algorithms are designed as

well as the Adder, subtractor, Multiplier, and divider, as

well as square root's RTL code for is synthesized

through Cadence RTL compiler, and the proposed

architecture is intended for 180nm TSMC technology

(Spoorthi, 2020).

In the case of the Floating Point (FP) division, this

research work introduces a dynamically configurable

and area-efficient multi-precision architecture. In the

Proceedings on Engineering Sciences, Vol. 06, No. 3 (2024) 903-914, doi: 10.24874/PES06.03.002

 909

technological and scientific areas, the division of

floating-point FP is considered one of the fundamental

computations. The double-precision (DP) division that

can process dual (two-parallel) as well as single-

precision (SP) computations are carried out by the

DPdSP FP divider proposed in this work. The proposed

design was primarily based on calculating division on

series expansion strategy. We used 0.18m technology

ASIC application with "OSUcells Cell Library" to

monitor the proposed framework. The presented

structure showed enhanced performance for throughput

and area with the product of site and delay (Malkapur,

2020).

A unique adaptable multiple-precision multiply-

accumulate (MAC) module for deep neural network

training and inference is introduced in this research

work. The MAC module supports some of the

operations, such as fixed-point and floating-point. The

presented module facilitates one 16-bit MAC operation,

two 8-bit multiplications sum, and a 16-bit addend in

floating-point format. The exponent's bit-width, as well

as mantissa, can be efficiently replaced to make the

MAC module to be more flexible. The suggested MAC

module also facilitates fixed-point operations by

defining the exponent's bit-width to zero. The MAC

module of the proposed work can also be subdivided to

assist four 4-bit multiplications as welandbit addend.

The presented module of MAC enables accumulating

eight 1-bit logic AND operations with minimum

accuracy to help binary neural networks. The suggested

unit of MAC offers greater flexibility with 21.8%

computation complexity compared to a typical MAC

module with 16-bit half-precision (Ushasree, 2013).

The implementation of hardware for analyzing arbitrary

roots of a single-precision floating-point number is

described in this research work. The implemented

structure is primarily based on the GH CORDIC

algorithm (Generalized Hyperbolic Coordinate Rotation

Digital Computer). The system proposed in this work

can determine the Nth root (Nx2) of a single-precision

floating-point number using various floating-point

numbers. Several measurements, such as precision,

power consumption, efficiency comparison, and many

more, were conducted after the successful

implementation of the structure. However, according to

the results obtained, the suggested technique determines

the Nth root of a positive single-precision floating-point

number along with a relative error of about 10 to 7. It

thereby presents an error-flattening output (Wang,

2019).

To speed up media and data streaming, the floating-

point module in a CELL processor's synergistic

processor unit uses a fully pipelined 4-way SIMD

module. This module aims to maximize the efficiency

of critical single-precision multiply-add operations by

assisting 32-bit single-precision floating-point and 16-

bit integer operands with two distinct latencies. It

consumes less power by making use of fine-grained

clock gating. The architecture, logic, circuits, and

implementation are co-designed to fulfill the parameters

such as performance, energy, and area (Wang, 2019).

In the computations of various scientific and signal

processing, the Floating Point (FP) multiplication has

been extensively used, and expansion is considered one

of the widely accepted arithmetic operations.

Furthermore, the suggested model proposed in this work

is compatible with IEEE-754 and thus can manage

overflow, underflow, rounding, and a variety of

exception scenarios. The structure accomplished a

frequency of 414.714 MHz with 648 slices area (Zeng,

2015).

The exponential function is effectively computed with

the help of double-precision numbers only when

rounding is correctly performed. The exponential

function must be determined with high precision to

achieve the accurately rounded exponential with some

arguments, and sometimes higher accuracy is required

for small ideas. This research work introduces small-

argument algorithms that are simple as well as fast. The

proposed algorithm is integrated with other

conventional methods to ensure optimum and average

processing time. With the help of double-precision

arithmetic, all the suggested algorithms accurately

compute rounded exponential functions for all the

rounding modes. Predetermined tables are often

employed in the argument reduction phase. These

algorithms are implemented by writing the code in C

language and are found to be user-friendly.

3. PROBLEM STATEMENT

Repeating-point addition and subtraction are frequently

employed arithmetic operations in most research areas.

There are very few research papers on the design of an

asynchronous floating-point adder. The conventional

AFPA designs use dual-rail coding, which necessitates a

wide application area because they are faster and

consume less power than their standard FPA

counterparts. This research work compared several

performance aspects with their respective baseline FPA

with all four contemporary AFPA designs. Since all the

current models have multiple performance parameters, a

complete evaluation is impossible.

On the other hand, the implementation of AFPA is the

only design presented in this research work, and it

demonstrates that the asynchronous methodology can

enhance AFPA performance. It also explains the

possible consequence of an AFPA developed using a

bundled data protocol and a completion detection

methodology. Based on the literature survey, power,

area, and latency are more than existing methods.

Nagarathna & Aswatha, Design and performance analysis of ternary logic based ALU using double precision floating point

 910

4. PROPOSED DOUBLE PRECISION BASED

ALU DESIGN

The following process was carried out to implement a

latency-effective pipelined hardware divider. Initially,

the size of the Look-up table and MUL bit width

information was determined by conducting an error

analysis on the implemented divider architecture in

cases 1 and 2. Further, we choose the best possible

block size with the help of Look-Up Table size and

MUL bit-width, which is determined from the essential

information. At last, by using optimal block size as a

reference, the architecture of the divider is developed.

Fig. 1 and 2 illustrate that once the LUT is accessed in

the very first process, value A is generated in the second

phase. The total computational latency is increased

because the two tasks are carried out one after the other.

The implemented architecture parallelizes multiplication

and Look Up Table access to effectively minimize

latency. Jeong's algorithm can be modified to obtain the

advantage of parallelism.

 (2- AR) AP = (2 -

 (-) R)

 (-) P

(1)

It is possible to parallelize the LUT access for as well

as for multiplications (-)P as well as (-

)R. Based on equation (1), the procedural steps are

depicted in Figure 3. Jeong's algorithm has a latency of

1 LUT C 3 MULs, whereas the algorithm presented in

this work has a latency of 3 MULs. In comparison to

Jeong's algorithm, the clustering framework enables one

more multiplier. To exploit the advantage of

parallelism, based on Singh's algorithm the following

equation can be written:

 (–(1-AR))AP=(

 – (1-

 (-) R))

 (-) P. (2)

Figure 1. Block diagram of the proposed architecture

DPFP division

The multiplications (-)P as well as (-)P,

and LUT access for

 , can be carried out

simultaneously. Figure 4 indicates the proposed

procedural steps for exploiting parallelism. The

algorithm proposed in this work possesses a latency of 4

MULs along with another multiplier whereas, Singh's
algorithm possesses a latency of 1 LUT C 4 MULs,

whereas the proposed algorithm has a latency of 4

MULs and as well as one multiplier.

Since error analysis offers base data for determining the

size of the Look-Up Table and base data for

determining the bit widths of MULs, the proposed

algorithm is essential for designing the architecture of

the hardware divider. The error analysis for the above

two scenarios is performed, and the optimal block size

is determined in this section.

Table 1 shows the comparison results of delay, area cost

of the proposed strategy, and the existing pipelinable

division algorithms. Each algorithm's overall delay or

total area cost is derived by summing every pipeline

iteration's delays or area costs. Table 1 shows that Case

1 in the proposed methodology might approximately

decrease the critical path time by 16 % and a 21%

increase in hardware area compared to that of (Defour,

2019). With a 45% increase in the hardware area, the

proposed technique in Case 2 could minimize the

critical path time by approximately 7% compared to that

of (Kiran, 2017). In contrast to (Defour, 2019), the

proposed strategy in Case 1 can minimize the depth of

the pipeline by one step and possess the same delay

(12.0) as that of (Defour, 2019) within a channel. This

suggests that when contrasted to (Defour, 2019) with

almost the same clock frequency, the proposed

methodology in Case 1 can reduce the delay of the

pipeline by 25%.

Figure 2. Block diagram of the proposed architecture

for DPFP of Multiplication

Proceedings on Engineering Sciences, Vol. 06, No. 3 (2024) 903-914, doi: 10.24874/PES06.03.002

 911

This outcome corresponds to the suggested approach in

Case 2, which can further reduce the uncertainty of the

channel by 20% when contrasted to (Kiran, 2017) at the

same clock frequency. The proposed methodology in

Case 2 minimizes the area's cost by 28% and has the

same pipeline depth as that of (Defour, 2019) but with

an 8% slower clock frequency. For precise evaluation,

the suggested architecture was synthesized using a

28nm process along with the Synopsys design compiler,

and thereby the execution result was contrasted to that

of existing models (Defour, 2019 and Kiran, 2017). The

pipelined delay was reduced by 22% while increasing

the area by 34% over (Defour, 2019), and these

comparisons are illustrated in Table 2. Compared to

(Kiran, 2017), Case 2 of the proposed algorithm reduces

the pipeline delay by approximately 11% while

increasing the area by 33%. The delay time reduction

rate of Case 1 was increased from 16% to 22% when

contrasted to that in (Defour, 2019), as well as the

hardware area was increased from 21% to 34% and at

last, the result comparisons of table 2, as well as Table

1, are carried out. In contrast to (Kiran, 2017), the delay

time reduction rate of Case 2 significantly improved

from 7% to 11%, whereas the hardware area reduced

from 45% to 33%. Therefore, compared to the existing

algorithms (Defour, 2019) and (Kiran, 2017), the size of

the hardware shown in table 1 and table 2 was enhanced

equally by 33%.

Power consumption is typically proportional to the

area associated with it. Therefore, area-timing

products (ATP) based on area as well as timing

values are commonly utilized in domains similar to

the one used in this work, as well as ATP outcomes

are employed as indicators of power consumption

(Havaldar, 2016), (Spoorthi, 2020). As a result, we

used the ATP model to evaluate and analyze the

preceding algorithms in terms of power consumption.

The proposed algorithm's ATP outcomes are

compared with the existing techniques (Defour, 2019)

and (Kiran, 2017) and are illustrated in Table 4. ATP

was determined in the first phase by categorizing

LUT and the multiplier in 1 and two proposed

scenarios. Since the delay time, as well as the power

consumption of the two systems, is unique, the

computation is accurate. According to the analysis of

ATP, the power consumption of the suggested

pipeline divider was approximately 37%. It was equal

to a 33% increase in hardware size compared to

conventional algorithms. It was concluded that power

consumption and area are proportional to each other

from these observations. The algorithm of the

pipelined division was previously utilized in (Zhang,

2019). There exists a lot of discrepancies between

(Hao Zhang 2019) as well as the proposed approach.

Computations of fractions and error analysis on

double-precision accuracy are to be performed or not

are some of the critical variations offered as well

(Zhang, 2019). Whenever floating-point arithmetic is

employed as a fraction estimation technique in

(Zhang, 2019), the hardware size or operational

frequency may be higher or lower than the

recommended fixed-point arithmetic technique.

5. COMPARISON WITH EXISTING

MULTIPLICATION METHODS

The quotient is generated by approximating the

multiplicative algorithm with the application of

hardware that integrates a floating-point multiplier and a

LUT.

Table.1 Comparison between the conventional adder and proposed ternary-based double precision floating point adder

Adders Slices
Delay

(ns)
FF’s

Power

(W)

Slice

LUT’s

Area

(Occupied

Slices)

Memory Frequency

MHz

(Spoorthi, 2020) 1140 2.87 2021 7.69m

 (Srujana, 2020) 1047 11.15 1724 36.34m

(Spoorthi, 2020) 1268 9.24 1536 0.4 µ

 (Srujana, 2020) 992 82.21 4990 13.54m

(Addanki, 2013) 1655 35.2 1642 0.6µ

Proposed

Ternary based

double precision

floating point

adder

892 1.340 1201 0.082 µ 629 3071 137KB 127.09

Nagarathna & Aswatha, Design and performance analysis of ternary logic based ALU using double precision floating point

 912

Table.2. Comparison between conventional multiplier and proposed Multiplier

Multiplier
Slices

(area)
LUT

Delay

(ns)

Power

(mW)

Area*

delay

Time*

power
Area*time*power

FF’s/

Memory

Frequency

(David,

2019)
12095 7620 8.4 1.56

(Oh, 2005) 4520 9841 5.32 0.94

Proposed

ZP &

FRBM

3819 4951 3.841 0.088 2100/132

Table.3 Comparison between conventional adder and proposed ternary based double precision floating point subtractor

Adders Slices
Delay

(ns)
FF’s

Power

(W)

Slice

LUT’s

Area(Occupied

Slices)

Memory Frequency

MHz

Kogge-Stone

(Spoorthi, 2020)
7209 6.41 4821 0.97 3061

Sklansky (Srujana,

2020)
5620 4.9 3875 2.40 2971

Proposed Ternary-

based double

precision floating

point subtractor

2820 3.841 2861 0.088 1672 1863 132 52.637

Table.4. Comparison between conventional Division and proposed Division

Multiplier
Slices

(area)
LUT

Delay

(ns)

Power

(mW)

Area*

delay

Time*

power
Area*time*power

FF’s/Memory Frequency

(Merchant,

2016)
4921 2901 7.81 1.45

(Jalaja,

2016)
6320 1974 4.76 1.09

Proposed

ZP &

FRBM

2085 1864 3.84 0.082 2843/133 180.865MHz

6. CONCLUSION

Double precision floating-point addition and subtraction

are frequently employed arithmetic operations in most

research areas. There are very few research papers on

the design of an asynchronous floating-point adder. The

conventional AFPA designs use dual-rail coding, which

necessitates a wide application area because they are

faster and consume less power than their standard FPA

counterparts. This research work compared several

performance aspects with their respective baseline FPA

with all four contemporary AFPA designs. Since all the

current models have multiple performance parameters, a

complete evaluation is impossible. On the other hand,

the implementation of AFPA is the only design

presented in this research work, and it demonstrates that

the asynchronous methodology can enhance AFPA

performance. It also explains the possible consequence

of an AFPA developed using a bundled data protocol

and a completion detection methodology. A unique low-

latency pipelined divider structural design for double-

precision numbers was developed in this research work.

Compared to other existing techniques, the proposed

architecture minimizes the pipeline's depth by one step.

The algorithm presented in this work can also reduce

the computational latency without increasing the size of

the Look-Up Table and is implemented on two

traditional divider architectures. The given divider

architecture is more suitable for systems requiring

double-precision division.

References:

Defour, D., et al. (2001). Correctly rounded exponential function in double-precision arithmetic</title> Proceedings of

SPIE, the International Society for Optical Engineering/Proceedings of SPIE. https://doi.org/10.1117/12.448644

Havaldar, S., et al. (2016). Design of Vedic IEEE 754 floating point multiplier. 2016 IEEE International Conference on

Recent Trends in Electronics, Information & Communication Technology (RTEICT). Bangalore, India, 1131-113.

https://doi.org/10.1109/RTEICT.2016.7808008

Proceedings on Engineering Sciences, Vol. 06, No. 3 (2024) 903-914, doi: 10.24874/PES06.03.002

 913

Hiratkar, S., et al. (2016). VLSI design of analog multiplier in weak inversion region. 2016 IEEE International

Conference on Communication and Signal Processing (ICCSP). Melmaruvathur, India, 0832-0835.

https://doi.org/10.1109/ICCSP.2016.7754262

Jaiswal, M. K., et al. (2014). Configurable architecture for double / two-parallel single precision floating point division.

2014 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Tampa, FL, USA, 332-337.

https://doi.org/10.1109/ISVLSI.2014.45

Jaiswal, M. K., et al. (2015). Dual-mode double precision / two-parallel single precision floating point multiplier

architecture. 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). Daejeon, Korea

(South), 213-218. https://doi.org/10.1109/VLSI-SoC.2015.7314418

Jaiswal, M. K., et al. (2017). DSP48E efficient floating point multiplier architectures on FPGA. 2017 30th International

Conference on VLSI Design and 2017 16th International Conference on Embedded Systems. Hyderabad, India, 1-6.

https://doi.org/10.1109/ICVD.2017.7913322

Kiran, D. K., et al. (2017). VLSI implementation of Braun multiplier using full adder. 2017 IEEE International

Conference on Current Trends in Computer, Electrical, Electronics, and Communication (ICCTCEEC-2017).

Mysore, India, 499-504. https://doi.org/10.1109/CTCEEC.2017.8455157

Malkapur, S. B., et al. (2020). Design of generic floating point pipeline based arithmetic operation for DSP processor.

2020 IEEE International Conference on Inventive Research in Computing Applications (ICIRCA). Coimbatore, India,

1059-1064. https://doi.org/10.1109/ICIRCA48905.2020.9182948

Mehta, A., et al. (2013). Implementation of single precision floating point multiplier using Karatsuba algorithm. 2013

IEEE International Conference on Green Computing, Communication and Conservation of Energy (ICGCE).

Chennai, India, 254-256. https://doi.org/10.1109/ICGCE.2013.6823439

Merchant, F., et al. (2016). Efficient realization of table look-up based double precision floating-point arithmetic. 2016

29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems.

Kolkata, India, 415-420. https://doi.org/10.1109/VLSID.2016.113

Oh, H. J., et al. (2005). A fully-pipelined single-precision floating-point unit in the synergistic processor element of a

CELL processor. 2005 Symposium on VLSI Circuits Digest of Technical Papers. Kyoto, Japan, 24-27.

http://doi.org/10.1109/VLSIC.2005.1469325

Oh, H. J., et al. (2005). A fully-pipelined single-precision floating-point unit in the synergistic processor element of a

CELL processor. IEEE Journal of Solid-State Circuits, 41(4), 759–771. https://doi.org/10.1109/JSSC.2006.870924

P, S., et al. (2018). Comparison of Braun multiplier and Wallace multiplier techniques in VLSI. 2018 Fourth

International Conference on Devices, Circuits and Systems (ICDCS). Coimbatore, India, 48-53,

https://doi.org/10.1109/ICDCSyst.2018.8605173

Ramesh, A. P., et al. (2013). An FPGA based high-speed IEEE-754 double precision floating point multiplier using

Verilog. 2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and

Telecommunication System (ICEVENT), Tiruvannamalai, India, 2013, pp. 1-5.

https://doi.org/10.1109/ICEVENT.2013.6496575

Ramesh, A. P., et al. (2013). An FPGA based high-speed IEEE-754 double precision floating point multiplier using

Verilog. 2013 IEEE International Conference on Emerging Technology Trends in Electronics, Communication and

Networking. Tiruvannamalai, India, 1-5. https://doi.org/10.1109/ICEVENT.2013.6496575

S, J., et al. (2016). Design of low power based VLSI architecture for constant multiplier and high-speed implementation

using the retiming technique. 2016 IEEE Microelectronics Conference (MicroCom).

https://doi.org/10.1109/MicroCom.2016.7522503

Savas, S., et al. (2017). Efficient single-precision floating-point division using harmonized parabolic synthesis. 2017

IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Durgapur, India,1-6.

https://doi.org/10.1109/ISVLSI.2017.28

Spoorthi, M. N., et al. (2020). A Decimal multiplier with improved speed using semi-parallel iterative approach. 2020

24th International Symposium on VLSI Design and Test (VDAT), Bhubaneswar, India, 1-6.

https://doi.org/10.1109/VDAT50263.2020.9190260

Ushasree, G., et al. (2013). VLSI implementation of a high-speed single precision floating point unit using Verilog.

2013 IEEE Conference on Information and Communication Technologies (ICT). Thuckalay, India, 803-808.

https://doi.org/10.9790/2834-10114954

Wang, Y., et al. (2019). GH CORDIC-based architecture for computing Nth root of single-precision floating-point

number. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(4), 864-875.

https://doi.org/10.1109/TVLSI.2019.2959847

Nagarathna & Aswatha, Design and performance analysis of ternary logic based ALU using double precision floating point

 914

Zeng, Z., et al. (2015). A Wideband common-mode suppression filter with compact-defected ground structure pattern.

IEEE Transactions on Electromagnetic Compatibility, 57(5), 1277-1280.

https://doi.org/10.1109/TEMC.2015.2440424

Zhang, H., et al. (2019). New flexible multiple-precision multiply-accumulate unit for deep neural network training and

inference. IEEE Transactions on Computers, 69(1), 26-38. https://doi.org/10.1109/TC.2019.2936192

Nagarathna R
Department of Electronics

&Telecommunication Engineering,

Dayananda Sagar College of

Engineering, Visvesvaraya

Technological University, Karnataka,

India,

nagarathnatce@dayanandasagar.edu

ORCID 0000-0003-2783-1886

A R Aswatha
Department of Department of

Electronics &Telecommunication

Engineering, Dayananda Sagar College

of Engineering, Visvesvaraya

Technological University, Karnataka,

India

aswath.ar@gmail.com

ORCID 0000-0001-8423-4071

mailto:nagarathnatce@dayanandasagar.edu
mailto:aswath.ar@gmail.com

