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A B S T R A C T 

Federated learning (FL) is an emerging paradigm for decentralized training 

of machine learning models on distributed clients, without revealing the data 

to the central server. The learning scheme may be horizontal, vertical or 

hybrid (both vertical and horizontal). Most existing research work with deep 

neural network (DNN) modeling is focused on horizontal data distributions, 

while vertical and hybrid schemes are much less studied. In this paper, we 

propose a generalized algorithm FedEmb, for modeling vertical and hybrid 

DNN-based learning. The idea of our algorithm is characterized by higher 

inference accuracy, stronger privacy-preserving properties, and lower client-

server communication bandwidth demands as compared with existing work.   

The experimental results show that FedEmb is an effective method to tackle 

both split feature & subject space decentralized problems. To be specific, 

there are 0.3% to 4.2% improvement on inference accuracy and 88.9 % time 

complexity reduction over baseline method. 

© 2024 Published by Faculty of Engineering  

 

 

 

 

1. INTRODUCTION 
 

Federated learning stands in contrast to traditional 

centralized machine learning techniques where all the 

client datasets are uploaded to a central server (Su et al, 

2023; Kalra et al., 20203) using privacy-preserving 

methods. In terms of another driver for federated 

learning, besides confidentiality considerations, is the 

abundance of datasets - the mandatory size of sample 

sets, or dense representations to ensure learning effects - 

then focus on implementing the advanced and efficient 

small set machine learning approaches for Federated 

Learning systems & paradigms. In Horizontal Federated 

Learning (HFL) clients shares the same feature space 

but differ in the samples selected. FedAvg was 

introduced (McMahn et al., 2017; Wu et al., 2023) by as 

the first HFL algorithm to train DNN models with 

decentralized and confidential datasets. Following this 

work (Wang et al., 2023), developed FedMat with 

weight matching average, and (Li et al., 2020) 

developed FedProx for heterogeneous networks when 

the data are non-iid. 
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Vertical Federated Learning (VFL), introduced in 

(Hardy et al., 2017), aggregates different features to 

build models using samples with the same IDs. In daily 

life, VFL is widely investigated in collaborative 

financial and hospitality systems, where different banks 

& hospitals own unique information for same users & 

patients. Whereas in HFL DNN weights are averaged, in 

VFL gradients and feature embedding vectors are 

normally exchanged among all parties. Existing work in 

VFL leaves the following challenges. Encryption on 

gradient and feature embedding vectors is required for 

privacy-preserving on the client side. At the same time, 

decryption in server is necessary for aggregated 

computing; this process is inherently of high time 

complexity. On the other hand, the classical encrypting 

methods such as homomorphic encryption (Zhang et al., 

2018; Zhang and Zhu, 2020) come with high 

computation costs when data is converted to a paillier 

tensor (Zhao and Geng, 2019; Acar et al., 2018). 

Hybrid Federated Learning (HBFL) combines both 

configurations of HFL and VFL (Figure 1), where data 

do not share the same feature spaces or the same sample 

IDs. HBFL has more extensive application scenarios, 

when distributed clients have overlapping or non-

overlapping user ID or features. For instance, the mobile 

payment institute and traditional branch bank have 

partial common customer and partial similar user 

features. Meanwhile, their tracking databases also store 

variant users and unique features due to different 

business models and target groups. In this case, HBFL 

is a very good algorithms to tackle complex data spaces. 

For HBFL most work is based on linear models (Gao et 

al., 2019; Sharma et al., 2019; Yang et al., 2021) and we 

are not aware of any work on DNN modeling in this 

space. A typical problem in the HBFL scheme for DNN 

is that a client may possess only a subset of sample IDs 

and a subset of features, that are not totally disjoint with 

data held by other clients. Furthermore, the data is likely 

to be incomplete with respect to the centralized setting. 

In the VFL scheme all of the clients need to formulate a 

batch of samples with the same IDs; this problem is 

exacerbated in the HBFL scheme because not all the 

clients have all samples. An ideal algorithm shall work 

without requiring the clients to synchronize their sample 

draws. 

 

 
Figure 1. Horizontal and Vertical Data Distribution Visualization: HFL owns different samples, but VFL owns 

different features (Yang et al., 2019). 

 

Motivated by incremental learning (Wu et al., 2019), we 

propose the use of partial network embedding and 

tuning to address both VFL and HBFL schemes in our 

algorithm, FedEmb. Generally, partial networks from 

different clients possibly stores disjoint or overlapping 

features of their own data, which cannot be directly 

averaged. To address this, we make the server vertically 

combine all partial networks to enable communication 

between different feature spaces using concatenated 

feature embedding vectors, thus acquiring knowledge of 

the whole data distribution incrementally during the 

global rounds. The feature embedding vectors are 

intermediate representations in partial networks at 

clients with privacy-preserving, so confidentiality of the 

datasets is guaranteed. Our contributions are as follows: 

 To the best of our knowledge, this is the first 

investigation addressing HBFL for both i.i.d 

and non-i.i.d cases with DNN modelling. There 

is no need for sample ID synchronization and 

alignment for server processing. 

 FedEmb is completely free of gradient 

exchange that most works normally deploy for 

training DNN in VFL or HBFL, which is 

highly questionable due to deep leakage (Zhu 

et al., 2019) and of high time complexity to 

complete a round of network updates of all 

clients. We only pass weights of partial 

networks of clients and aggregation-level 

feature embeddings, and clients are able to 

conduct model training independently, which 

significantly lowers communication costs. 

 FedEmb has a higher level of privacy 

protection. In clients, we protect feature 

embedding vectors in two ways: vector 

aggregation and differential privacy, thereby 

precluding the need for decryption in the 

server. 

 Our method has low bandwidth cost for 

communications between the server and 

clients. Instead of a full model or complete 

feature embedding vector exchange, we 
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aggregate vectors via clustering and the partial 

network is distributed. 

 

In the paper, we organize our investigations in the 

following orders: Section 1 introduces most recent work 

about horizontal federated learning, vertical federated 

learning, hybrid federated learning (federated transfer 

learning) and differential privacy for privacy-preserving 

manners. Then Section 2 illustrates data partition setting 

in vertical federated learning and hybrid federated 

learning and their learning paradigms. Concrete 

differential privacy protection applied to feature 

embedding vectors are demonstrated in the end. Finally, 

a series of experiments, including two baseline methods 

(centralized learning and FATE for vertical federated 

learning) are presented to validate the performances and 

benefits of FedEmb. Conclusion Sections centralizes on 

summarizing the whole article and proposes possible 

future works. 

 

2. RELATED WORK 
 

With the improvement of computer computing power, 

machine learning, as an analysis and processing 

technology for massive data, has widely served human 

society. However, the development of machine learning 

technology faces two major challenges: firstly, data 

security is difficult to guarantee, and the problem of 

privacy data leakage needs to be solved urgently; 

secondly, network security isolation and industry 

privacy, there are data barriers between different 

industries and departments, resulting in data The 

formation of "isolated islands" cannot be safely shared, 

and the performance of the machine learning model 

trained only on the independent data of each department 

cannot achieve global optimization. In the following 

paragraphs, we demonstrate three main federated 

learning paradigm to address the data security and 

decentralization. 

 

2.1 Horizontal Federated Learning (HFL) 

 

With horizontal data, subjects & IDs are available with 

a consistent set of features. This is exactly the type of 

data fee into a supervised machine learning task. 

Horizontal federated learning is suitable for the situation 

where feature space of each ID is almost or completely 

overlapped, but the sample ID overlaps less. For 

example, the customer data of two banks in different 

regions. The word "horizontal" comes from the 

"horizontal partitioning, a.k.a. sharding" of data. 

FedAvg is the classical method where the server 

averages well-trained local weights and distributes back 

global models to clients in every round. However, the 

method is less competitive when the data in the clients 

is non-i.i.d. To address this issue, demonstrate FedMat 

to conduct neuron matching and alignment using 

Bayesian optimization to improve inference accuracy. 

In terms of the limitation that local models should be 

well-trained before passing in FedAvg, FedProx (Li et 

al., 2020) is proposed where weights can be exchanged 

with the serve without fine-tuning. In (Yang et al., 2021; 

Sidahmed et al., 2021) the authors discuss the learning 

effects on averaging partial networks of clients to 

reduce the computational complexity in the server. 

However, their algorithms can only be applied for HFL, 

and not VFL or HBFL, with the same architectures for 

exchanging weights. 

 

2.2 Vertical Federated Learning (VFL) 

 

FL with data split by features, is a unique learning 

paradigm in relative to the scheme that data is 

partitioned by IDs. It is optional to introduce a central 

server as a the third-party for processing, as a result, it 

requires clients to share presentations with privacy-

preserving manners instead of network & algorithm 

parameters as exchanges, to enable full gradient 

calculations. Most current work is centralized on the 

linear model, especially linear regression and logistic 

regression. The concept and algorithms for VFL were 

first proposed by (Hardy et al., 2020), where a federated 

logistic regression scheme is employed using 

homomorphic encryption. Subsequent to this work, (Hu 

et al., 2019a; Kang et al., 2020; Hu et al., 2019b; Wang 

et al., 2020) introduce the gradient-free VFL paradigm 

for logistic regression models. In the context of DNN 

modelling, Heterogeneous Federated Learning using 

Homomorphic Encryption developed by (Zhang et al., 

2018; Zhang and Zhu, 2020) is the most classical DNN-

based VFL. The method exchanges encrypted feature 

embedding vectors from the client output layer, then 

back-propagate gradients from the server to update the 

models in the clients. However, this approach has high 

time complexity for communication and computing, the 

latter due to the encryption-decryption process. 

Secondly, the linear summation operation conducted by 

the server on feature embedding vectors from different 

clients is unable to fully represent disjoint feature 

spaces, thus impacting the training. On the other hands, 

there are some literature discuss the potential of 

utilizing differential privacy to vertical federated 

learning as well (Errounda et al., 2023). discusses the 

feasibility and effectiveness of dynamic differential 

privacy implemented on model parameters and feature 

presentations (Li et al., 2023). put their focus on feature 

selections, which are most representative in each client 

and then combine together for further learning and 

communications. 

 

Table 1. Comparison between paradigms: ✓means 

the paradigm shares the named space among clients 

& has existing work. Otherwise, X represents no 

named space sharing among clients & no previous 

work 

Paradigm Subject Feature DNN Modelling 

Centralized ✓ ✓ ✓ 

HFL X ✓ ✓ 

VFL ✓ X ✓ 

HBFL X X X 
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2.3 Hybrid Federated Learning (HBFL) 

 

In hybrid federated learning, also referred to as 

federated transfer learning, the sample IDs and feature 

spaces are disjoint. A HBFL setting is similar to HFL in 

that clients do not share their local data or labels (Gao et 

al., 2019;). Current work in HBFL is primarily focused 

on linear models as VFL, for example (Gao et al., 2019; 

Zhang et al., 2022; Yang et al., 2020). Their methods 

are either constrained by specific scenarios or hard to be 

generalized for DNN with large learnable parameter 

sets. We did not find any work with the HBFL scheme 

using DNN. In edge-device learning network or 

resource-restricted systems (Guo et al., 2023; Zhang et 

al., 2023; Qi et al., 2023), HBFL is widely investigated 

due to the natural fact that neither ID nor features 

sharing in a set of small data collectors. To be specific, 

mobile devices are usually power-limited or storage-

limited, which leads to constrained computing & data 

transferring in user & client communication with 

confidentiality. These works all discuss linear model 

applications such as logistic regression, tree-based 

learning or shallow vector machine algorithms, which is 

weak in representing higher-level information and data 

spaces. As mentioned previously, the scheme of HBFL 

naturally miss more information than HFL and VFL. 

Consequently, the shallow feature representation 

captured by simple models severely shorten the 

aggregation learning performances. 

 

2.4 Differential Privacy (DP) 

 

DP is a system for disclosing information about a 

dataset by maintaining feature distributions about 

entities in the dataset (Dwork and Roth, 2014; Friedman 

and Schuster, 2010; McSherry and Talwar, 2007) while 

preserving privacy (Waserman and Zhou, 2010; Dwork 

and Lei, 2009). The main objective is that if the effect 

of making an arbitrary single substitution in the 

database is small enough, the query result cannot be 

used to infer information about any single individual or 

unit, and therefore provides privacy. Achieving 

differential privacy typically requires some form of data 

transformation. The three main categories of data 

transformation methods are: generalization through 

altering multiple individual feature values to the same 

value (Nissim and Stemmer, 2015; Dwork et al., 2010), 

suppression by removing attributes (Terrorvitis et al., 

2017; Chen et al., 2013) and perturbation using noise 

addition such as the Laplace method (Xiao and Xiong, 

2015; Nozari et al., 2016). We apply generalization and 

perturbation to feature embedding vectors for privacy 

preservation, which can be directly utilized for server 

tuning without significant accuracy loss. 

 

3. ALGORITHM 
 

In high level, our algorithms aggregate encrypted 

feature embedding vectors from all clients and partial 

neural network weights in server to do fine-tuning. The 

split vectors are vertically concatenated to represent the 

whole data spaces, similarly, the split weights are 

vertically concatenated to demonstrate distributed 

learning outcomes. In this section, we first introduce the 

data partitions distributed across all clients for the VFL 

and HBFL schemes. We then present the learning 

paradigm of FedEmb. Finally, the methods on privacy 

enhancement are illustrated for protecting feature 

embedding vectors. 

 

3.1 Data Partition 
 

Assume that there are 𝑁 samples denoted as   
        

  where each sample 𝑥𝑛 has 𝐷 features: 

                 and  𝑛 is the corresponding label. 

There are 𝑀 clients in total. Index the features by 

          sample data by 𝑛=1,...,𝑁, and clients by 

𝑚=1,...,𝑀 𝑚        𝑀  If the scheme is VFL then each 

clients possess all 𝑁 samples with partial feature space, 

and the m-th client dataset can be formulated as 

                      
                 

  . For HBFL, 

where each client has some samples and their partial 

features, and if the m-th client only has the 𝑁𝑚 samples 

out of all 𝑁 samples, we can denote the local set as 

                       

                
   

   . 𝐷𝑚 is 

the set of features available to the m-th client. In our 

learning setting, both 𝑥𝑛,  𝑛 are NOT exchanged with 

the server. For HBFL, any  𝑚 can either repetitively 

exist in different clients (joint feature sets) or not 

(disjoint feature sets). 

 

3.2 Learning Paradigm 
 

For the m-th client 𝑚        𝑀, we denote       
  

as the network function for local DNN, where    
 

   is an input sample from a local dataset   ,    𝐷 

There are 𝑁𝑀 samples in total (𝑁  𝑁 if the scheme is 

VFL). We define two parts of the whole network: the 

private partial network is   
     

   
      , and the 

public partial network is   
       

      , where 

𝑢     are the respective layer dimensions for the two 

networks. 𝐿 denotes the first network and 𝑆 denotes the 

second network, and   
  and   

  are the respective 

output embedding feature vectors of the two networks. 

The entire network is given by: 

 

      
    

    
     

   
     

    

 

We denote      
     

  as the shareable network, and 

the network of the server can be represented as: 

 

𝑢             
            

     
     

 

where 𝑗 is the index of the global round,   
  is the 

connecting weight at round 𝑗 for mitigating overfitting, 

and      
            

   are trainable weights in 𝑢. After 

the local training is completed, we pass      
       

and the aggregation-level feature embedding vector set 
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     and 

  
         

      
     to the server. For vector 

set pairs    
    

   from all 𝑀 clients, they formulate the 

new embedding vector set                       , 

where       
        

      ∑    
        

  
 

   
. 

 

   works as the input set for server network fine-tuning, 

and    is the supervising ground truth set. Similarly, the 

networks passed from the clients are also vertically 

embedded correspondingly. We do the fine-tuning on 

using two cohesive sets of vectors    and     as shown 

in Equation and then distribute back updated   
  to the 

m-th client correspondingly. 

 

local training in parallel: Train local network    using 

local dataset       
     

     
   

      
     with 

privacy protections. Pass   
    

  and   
  to the server, 

server tuning: Formulate      , Let the updated 

weights be notated by NEW:   
  =        Distribute 

back      
      to corresponding client 𝑚. 

The learning paradigm is summarized in Algorithm 1 

and visualized in Figure 2. It is obvious that the local 

training could be in parallel and server tuning is in one 

timestamp; as a consequence, the time complexity 

  𝑚    holds.   
  are intermediate feature 

representations and   
  are the predicting 

representations of DNN, where the linear summed 

outputs    approximate predictions of concatenated 

inputs     These vectors represent the data space owned 

by the corresponding clients, which could be 

incrementally communicated and learnt by the fused 

network in every round of server interactions, thereby 

preventing the network   
  from catastrophically 

forgetting after subsequent local training. To this end, 

the local data and labels are non-revealing after 

applying privacy protection measures. The reason for 

conveying   
  without the last few layers is due to the 

fact that the bottom layers are usually over-

parameterized relative to the top layers, where 

parameter spaces are shallow (Du et al., 2018; Li and 

Liang, 2018; Allen-Zhu et al., 2019). 

 

 
Figure 2. FedEmb learning paradigm (take 2 clients as an example): red and blue parts are heterogenous networks from different 

clients. We only pass partial networks to the server and embed them to formulate the server network. In server tuning, the network 

will be comprehensively communicated for learning all dataspaces 

 

 
Algorithm 1. FebEmd Training 
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3.3 Feature Alignment & Representation 
 

VFL: In the VFL scheme, we assume that the sample 

IDs are synchronized and aligned in the servers with 

respect to the  𝐿 combination. For current research 

viewpoint, vertical training and inference is based on 

collections of all users’ data covering all feature spaces 

without any missing information. Our models combine 

all underlying features from all local clients by 

aggregating processed feature embedding vectors and 

corresponding feature learning network. In this way, 

server networks are able to fully communicate and learn 

feature distribution from the other subspaces. 

 

HBFL: For the HBFL scheme, it may not be possible to 

match the  𝑚𝐿 from different users since the sample ID 

space is not fully disjoint. To address this issue, we 

randomly match and concatenate  𝑚𝐿 in multiple 

combination formats, and the matching & concatenating 

order is fixed in every round. As we described before, 

feature alignment is naturally complex and 

computationally consuming in vertical-oriented setting. 

Inspired by transfer learning and presentation learning, 

our work sheds lights on feature space coupling, which 

does not impose demanding sample ID cohesion. The 

stacking structure of the deep neural networks enable 

feature learning through designing multiple layers of 

learning nodes. These cascading data down-streaming 

architectures drives from the assumption of densed 

representation: observed data is generated by the 

interactions of many different factors across low-to-high 

levels. For a deep neural networks, the embedding 

vectors & activation with regards to intermediate layers 

are viewed as a representation of the original data space. 

Each level uses the representation produced by topper 

layers as input data, then generated new feature 

embedding for input of next layers as higher-level 

information. The input at the bottom layer is raw data, 

and the output of the final layer is the final low-

dimensional feature or representation. Following the 

principle, HBFL scheme is free of ID synchronization 

issues and the cohesive vector set fully represents the 

data space for all the data stored in the clients. When 

our algorithms employ distributed low-dimensional 

feature embedding vector combination in server, even if 

the vectors may be misaligned in ID-level, the 

aggregated ones still represent full data spaces in higher 

information level. The whole set is effective in being 

acquired by stacking structure of deep neural networks. 

3.4 Privacy Protection 
 

3.4.1 Data Aggregation 
 

In Section 3.2, we demonstrated the learning paradigm 

for FedEmb, where    and    are the aggregation-level 

output feature embedding vectors of the respective 

partial layers. Data aggregation is an effective method 

for protecting the privacy of data owners (Bonawitz et 

al., 2017; He et al., 2017), and widely applied in deep 

learning model training (Abadi et al., 2016). In our 

aggregation implementation, we design two methods for 

feature embedding vector aggregation: random 

clustering and K-means clustering. To be specific, in the 

first global round, we use either of the two methods – 

random or K-means – to cluster all feature embedding 

vectors to formulate    and    correspondingly. In 

subsequent global round, s the clustering order is 

maintained with respect to the sample IDs. 

 

3.4.2 Differential Privacy 
 

As introduced above, differential privacy enables 

original datasets to be modified with respect to sensitive 

information without impacting inference accuracy 

significantly (generally there is a trade-off between the 

extent of data modification and inference accuracy). For 

further protecting aggregation-level    and   , we 

deploy either generalization or perturbation on    and 

  .  

 

 𝑣        𝑠𝑜𝑟𝑡 𝑣𝑚     : All        
 =         

   

   . 

Recover the original order for 𝑣    . 
 

Generalization. Given a specific column of feature 

dimension in aggregation-level vectors, we sort all 

observations in increasing order. Based on the 

generalization hyper-parameter  , we generalize all 

individual feature values of every 𝑁     𝑁  to the 

same value, where we use the minimum value of these 

𝑁  observations for altering the 𝑁  observations. After 

the generalization for all 𝑁  observations is completed, 

we recover the original order of the observations then 

move forward to the next column of features. With this 

approach, we add anonymity to every feature value 

while maintaining the data distribution. The process is 

summarized in Algorithm 2. 

 

 

 
Algorithm 2. Generalization 
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Perturbation. Previous studies have shown that 

Laplace noise has better performance for privacy 

protection as compared to Gaussian noise used by when 

layer normalization is applied. So we add Laplace noise 

into the aggregation-level vectors. The Laplace 

distribution is formulated as  

 

         
 

  
 𝑥𝑝 

      

 
   

 

where   and   are local and scale parameters, 

respectively. Finally,  

 

  
    

      
         

    
      

       
 

Sensitivity. Sensitivity is to quantify the significance of 

privacy-preserving. Given a DP query function 𝑞 that is 

operating on feature embedding vectors   ,    and 

producing the average result difference for 𝑞     and 

𝑞     will be  𝑞         and  𝑞        , 

respectively. We define the minimum sensitivity 

relative to original data as privacy-preserving metrics 

(PPM), and select the minimum one out of two kinds of 

embedding vectors: 

 

  𝑀  𝑚 𝑛 
 𝑞        

  
 
 𝑞        

  
   

 

Where     is the L1-norm distance between data sets 

differing at most one element. The higher PPM means 

higher-level privacy-preserving. 

 

4. EXPERIMENT AND DATASETS 
 

4.1. Datasets 
 

We separately test FedEmb for VFL and HBFL schemes 

using the same datasets, namely: 

 MNIST: MNIST stands for Mixed National 

Institute of Standards and Technology, which 

has produced a handwritten digits dataset. This 

is one of the most researched datasets in 

machine learning, and is used to classify 

handwritten digits. It contains 60,000 training 

datasets and 10,000 testing datasets with 10 

classes. 

 Fashion-MNIST, FASHION: Fashion 

MNIST is an alternative to MNIST, and is 

intended to serve as a direct drop-in 

replacement for the original MNIST dataset. It 

contains 60,000 training datasets and 10,000 

testing datasets with 10 classes. 

 KDD Network Intrusion, KDD: The KDD 

data set is a standard data that has quite a lot of 

features namely 41 features that are continuous 

and discrete with normal or anomaly labels 

(Dos, Probe, R2L, U2R). It contains more than 

560k samples with 2 classes. 

 

Each client owns 
 

 
 of the feature space and all sample 

IDs for the VFL scheme, and both 
 

 
 feature spaces and 

 

 
 sample IDs for the HBFL scheme. In our cases, there 

is no space overlapping across different decentralized 

clients. 

 

4.2. Experiments 
 

In this section we present our experimental results, 

including vertical and hybrid settings. In our case, 𝑀 for 

vertical setting is 8 and 𝑀 for hybrid setting is 4. The 

less number selection for HBFL is due to the fact that 

datasets in all users are just the subset of whole space 

instead of a complete set in relative to VFL, so the large 

number of clients may cause significant information 

deficiency. The DNN model is an 8-layer multiple layer 

perceptron (MLP) with 128 neuron for each hidden 

layer. The clustering size for data aggregation is set as 

15,000, 1,200 and 600, respectively. We perform the 

experiments using multiple groups of differential 

privacy parameters: generalization parameter    is set 

as      ,       and     . The Laplace noise 

parameters   and   are set as 

                           respectively. 

 

FATE, an industrial-grade project build machine 

learning models collaboratively at large-scale in a 

distributed manner. The vertical learning methods in 

FATE mainly shed light on encrypting gradients and 

output activation, then send them to servers to conduct 

aggregated gradient computing. Local clients in FATE 

are unable to complete the self-training and gradients 

are exchanged for multiple times for privacy-preserving, 

which brings severe latency and complexity in system 

communication. 

 

We compare the performance of FebEmd against two 

baseline methods: centralized training scheme with all 

samples and all features; and Heterogeneous Federated 

Learning using Homomorphic Encryption (FATE) 

developed by (Zhang et al., 2018; Zhang and Zhu, 

2020), whose data distribution across 8 clients aligns 

with the VFL setting in FebEmd. The training results 

are shown in Table 2. In terms of HBFL, as we 

mentioned before, there is no exact investigation on 

HBFL using DNN modelling, as a consequence, only 

one centralized baseline setting is applied for reference 

in Table 3. 

 

4.3. Result Analysis 
 

From Table 2 and Table 3, we observe the following: 

1. In terms of the extent of privacy-preserving, 

higher   in generalization and higher   in 

perturbation present higher PPM. Dive into 

different datasets, large absolute value of   and   

provide stronger protections on FASHION and 

KDD than those on MNIST. This trends also align 

with the results in HBFL setting in Table [tb: 
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result2], where the size of samples in each client 

is smaller then VFL setting. 

2. Compared with FATE for VFL in Table [tb: 

result1], FedEmb almostly outperforms FATE for 

inference accuracy for most cases. The best 

accuracy in MNIST is 0.890 (1.3   higher than 

0.878 FATE), the best in FASHION is 0.797 (4.2 

  higher than 0.765 in FATE), and the best in 

KDD is 0.894 (0.3   higher than 0.891 in FATE). 

For general trends, higher PPM may weaken the 

performance of FedEmb, but losses are 

incremental, and maintains the learning effects. 

3. With regards to HBFL, the natural insufficient 

data space decides that the decentralized learning 

results are much worse than centralized paradigm. 

In Table [tb: result2], the trend for privacy-

preserving VS inference accuracy is similar, 

where the two factors are negatively affected. 4 

clients means all clients only own 25  whole 

datasets, however, we could still see FedEmb 

achieves descent learning abilities in global 

inference. The best HBFL accuracy for MNIST is 

0.92, FASHION is 0.757, and KDD is 0.805. 

4. For time complexity analysis, the complexity of 

FATE for single global round is   𝑚   𝑚   , 

but the complexity of FedEmb is fixed at   𝑚  
 . When m =      , we can reduce 66.7 , 80.0 , 

88.9  , respectively. 

 

Table 2. VFL Inference Accuracy: Accuracy (Acc.) VS Sensitivity (PPM.) for VFL with 8 clients. Homo. is the 

homomorphic encryption used by FATE, KM. and Ran. are the clustering methods for data aggregation. G. is the 

generalization, P. is the perturbation, and e and (μ, b) are the generalization and perturbation parameters if differential 

privacy is applied to the aggregation-level vectors. No privacy protection measures are applied for the centralized 

scheme. 

Scheme Privacy 
MNIST FASHION KDD 

Acc. Clu PPM. Acc. Clu PPM. Acc. Clu PPM. 

Centra 

lized 
N/A 0.993 N/A N/A 0.895 N/A N/A 0.925 N/A N/A 

FATE Homo. 0.878 N/A N/A 0.765 N/A N/A 0.891 N/A N/A 

FedEmb Ran. 0.881 15k 0.868 0.789 15k 0.662 0.893 15k 1.114 

 

KM. 0.885 15k 0.994 0.777 15k 0.594 0.892 15k 1.253 

Ran. 0.882 1.2k 1.025 0.771 1.2k 0.781 0.884 1.2k 2.643 

KM. 0.884 1.2k 0.999 0.776 1.2k 0.774 0.894 1.2k 2.577 

Ran. 0.871 0.6k 1.055 0.741 0.6k 0.817 0.874 0.6k 3.312 

KM. 0.873 0.6k 1.123 0.753 0.6k 0.963 0.883 0.6k 3.002 

FedEmb 

(G.) 

Ran + 0.83% 0.889 15k 0.859 0.779 15k 0.602 0.893 15k 1.006 

Ran + 3.33% 0.878 15k 0.761 0.797 15k 0.644 0.892 15k 1.118 

Ran + 

10.00% 
0.868 15k 0.739 0.792 15k 0.668 0.890 15k 2.553 

Ran + 0.83% 0.890 1.2k 1.107 0.774 1.2k 0.795 0.889 1.2k 1.619 

Ran + 3.33% 0.884 1.2k 1.048 0.756 1.2k 0.723 0.884 1.2k 2.434 

Ran + 10.00% 0.875 1.2k 1.009 0.749 1.2k 0.789 0.883 1.2k 2.989 

Ran + 0.83% 0.888 0.6k 1.028 0.742 0.6k 0.786 0.879 0.6k 1.212 

Ran + 3.33% 0.874 0.6k 1.026 0.752 0.6k 0.741 0.885 0.6k 1.856 

Ran +10.00% 0.871 0.6k 1.031 0.757 0.6k 0.789 0.882 0.6k 4.107 

FedEmb 

(P.) 

Ran + (0,2.5) 0.886 15k 0.866 0.772 15k 1.282 0.893 15k 1.457 

Ran + (0,5.0) 0.889 15k 0.768 0.795 15k 1.897 0.894 15k 1.112 

Ran + 

(0,10.0) 
0.876 15k 1.047 0.762 15k 3.403 0.892 15k 1.867 

Ran + (0,2.5) 0.893 1.2k 1.006 0.764 1.2k 1.257 0.893 1.2k 1.333 

Ran + (0,5.0) 0.885 1.2k 1.133 0.771 1.2k 2.413 0.888 1.2k 2.390 

Ran + 

(0,10.0) 
0.879 1.2k 1.143 0.745 1.2k 5.338 0.887 1.2k 3.049 

Ran + (0,2.5) 0.894 0.6k 1.107 0.755 0.6k 1.371 0.889 0.6k 1.787 

Ran + (0,5.0) 0.890 0.6k 1.108 0.758 0.6k 2.031 0.881 0.6k 4.919 

Ran + 

(0,10.0) 
0.868 0.6k 1.148 0.742 0.6k 4.218 0.876 0.6k 5.523 
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Table 3. HBFL Inference Accuracy: Accuracy (Acc.) VS Sensitivity (PPM.) with 4 clients. KM. and Ran. are the 

c ustering methods for data aggregation. G. is the genera ization, P. is the perturbation, and e and (μ, b) are the 

generalization and perturbation parameters if differential privacy is applied to the aggregation-level vectors. No privacy 

protection measures are applied for the centralized scheme 

Scheme Privacy 
MNIST FASHION KDD 

Acc. Clu PPM. Acc. Clu PPM. Acc. Clu PPM. 

Centra 

lized 
N/A 0.993 N/A N/A 0.895 N/A N/A 0.925 N/A N/A 

FedEmb 

Ran. 0.892 15k 0.832 0.754 15k 0.994 0.804 15k 1.222 

KM. 0.888 15k 1.024 0.757 15k 0.893 0.801 15k 1.278 

Ran. 0.884 1.2k 1.027 0.749 1.2k 0.881 0.804 1.2k 2.987 

KM. 0.887 1.2k 0.996 0.756 1.2k 0.797 0.805 1.2k 2.678 

Ran. 0.892 0.6k 1.055 0.748 0.6k 0.883 0.799 0.6k 3.444 

KM. 0.865 0.6k 1.123 0.752 0.6k 0.997 0.803 0.6k 3.876 

FedEmb 

(G) 
Ran + 0.83% 0.889 15k 0.912 0.750 15k 0.602 0.799 15k 3.996 

 

Ran + 3.33% 0.875 15k 0.901 0.749 15k 0.897 0.792 15k 1.987 

Ran + 10.00% 0.869 15k 0.839 0.746 15k 0.848 0.790 15k 2.346 

Ran + 0.83% 0.861 1.2k 1.403 0.747 1.2k 0.955 0.789 1.2k 2.669 

Ran + 3.33% 0.889 1.2k 1.388 0.755 1.2k 0.933 0.786 1.2k 2.989 

Ran + 10.00% 0.879 1.2k 1.309 0.739 1.2k 0.989 0.793 1.2k 2.989 

Ran + 0.83% 0.881 0.6k 1.426 0.736 0.6k 0.987 0.777 0.6k 3.014 

Ran + 3.33% 0.878 0.6k 1.499 0.746 0.6k 0.941 0.779 0.6k 3.776 

Ran + 10.00% 0.876 0.6k 1.302 0.757 0.6k 0.957 0.782 0.6k 4.552 

FedEmb 

(P.) 

Ran + (0, 2.5) 0.889 15k 1.866 0.756 15k 1.282 0.893 15k 1.457 

Ran + (0, 5.0) 0.883 15k 1.768 0.749 15k 2.437 0.794 15k 1.764 

Ran + (0, 10.0) 0.879 15k 1.774 0.736 15k 2.886 0.791 15k 1.887 

Ran + (0, 2.5) 0.878 1.2k 1.879 0.738 1.2k 2.957 0.795 1.2k 1.899 

Ran + (0, 5.0) 0.880 1.2k 1.933 0.731 1.2k 2.813 0.786 1.2k 2.656 

Ran + (0, 10.0) 0.859 1.2k 1.996 0.733 1.2k 3.338 0.787 1.2k 3.942 

Ran + (0, 2.5) 0.873 0.6k 2.107 0.749 0.6k 3.658 0.789 0.6k 3.587 

Ran + (0, 5.0) 0.869 0.6k 2.408 0.748 0.6k 3.954 0.788 0.6k 5.080 

Ran + (0, 10.0) 0.860 0.6k 2.893 0.739 0.6k 4.996 0.774 0.6k 5.882 

 

5. CONCLUSION 
 

FedEmb is a powerful, efficient and economic algorithm 

for vertical and hybrid federated learning schemes when 

DNN modelling is applied. In this paper, we start from 

analyzing the drawback of existing work, then move 

forward to how FedEmb is able to address the 

challenges & issues presented by current methods and 

the detailed learning pipeline in distributed settings. In 

terms of the characteristics of the algorithms, we totally 

abandon traditional homophobic encryption on vertical 

federated learning setting, introduce the approach to 

deploying partial neural network in local clients to be 

aggregated in server to learn the split feature space. The 

paradigm is also successfully extended to hybrid 

federated learning setting without additional algorithmic 

designs. 

With regards to the series of experiments for both 

vertical federated learning paradigm and hybrid 

federated learning paradigm, it demonstrates 

extraordinary performances for privacy learning. In the 

first place, FedEmb has tremendous inference accuracy 

in relative to baseline approaches; Secondly, we 

extensively discuss the trade-off between accuracy and 

privacy-preserving, which is extremely enlightening 

under the constraints of data protections. Last but not 

least, multiple differential privacy computations are 

investigated and proposed for enhancing the 

thoroughness of learning paradigm analysis. For future 

work, we plan to investigate more scalable FedEmb 

framework, which aims at enabling more clients 

network to congregate in server without memory 

exceeding issues. 
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