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A B S T R A C T 

The planning of tall buildings is an important part of urban growth, and more and 

more attention is being paid to sustainability, safety, and efficiency in the building 

process. Traditional design and manufacturing processes frequently have trouble 

maximizing these factors, which results in inefficiencies and higher prices. This 

research introduces a revolutionary strategy that combines dynamic firefly tuned-

AdaBoost (DFT-AdaBoost) in order to address the drawbacks of conventional tall 

building design methodologies. The goal is to increase manufacturing efficiency 

while also enhancing the tall building design's sustainability and safety features. 

The DFO is employed in an iterative manner to modify various design 

parameters, including material types, sizes, and shapes. On the other hand, 

AdaBoosting is utilized to improve the predicted accuracy of the model. The 

iterative nature of this methodology enables the ongoing improvement of design 

solutions in order to get the necessary level of manufacturing efficiency. The 

findings of this study indicate notable enhancements in manufacturing efficacy 

pertaining to the construction of tall buildings. The utilization of the DFT-

AdaBoost method enables the identification of optimized design parameters, 

resulting in the reduction of material waste and a decrease in production costs. 

This study highlights the DFT-AdaBoost approach's potential as a potent tool for 

improving manufacturing effectiveness in tall building designs. This method 

contributes to the construction of tall buildings that are more cost-effective, safe, 

and environmentally responsible by integrating real-time structural optimization 

with manufacturing process prediction. 

© 2024 Published by Faculty of Engineering 

 

 

 

 

1. INTRODUCTION  
 

Towering structures are outstanding examples of human 

creativity and ingenuity in the manufacturing sector. 

Relentlessly pursuing ever-higher verticality has 

resulted in the construction of famous skyscrapers that 

have completely changed urban landscapes and 

redefined our understanding of manufacturing 

efficiency. Tall building design, a multidisciplinary field 

bridging manufacturing, architecture, engineering, and 

sustainability, is critical to the realization of these 

enormous structures (Shen et al., (2018)). In-depth 
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coverage of the complex field of tall building design 

from a manufacturing standpoint is provided in this 

introduction, together with information on its historical 

development, vital position in modern urban planning, 

and cutting-edge tactics influencing its further 

development. 

 

1.1 An Overview of Historical Context 
 

The notion of building enormous constructions has always 

captivated mankind. Throughout history, numerous 

societies have attempted to reach unprecedented heights; 

examples include the magnificent pyramids of Egypt, the 

opulent Gothic cathedrals of Europe, and the ancient 

ziggurats of Mesopotamia (Elias et al., (2018)). But the 

start of the Industrial Revolution in the late 19th century 

marked a turning point in the development of tall building 

design. This period saw a revolutionary change in 

manufacturing due to improvements in steel production 

and building methods. From an aerial perspective, these 

inventions not only made it easier to build skyscrapers but 

also completely changed the urban environments of big 

cities like New York, Chicago, and London (Tomei et al., 

(2018)). 

 

The Woolworth Building by Cass Gilbert and the 

famous Flatiron Building in New York City by Daniel 

Burnham were two pioneering examples of the 

buildings that sparked the history of tall building design 

from a manufacturing aspect. The industrial procedures 

involved in the creation of these architectural wonders 

were changed, in addition to redefining the skyline. A 

new era of manufacturing techniques was ushered in by 

them, and this inspired architects and engineers to push 

the limits of what was possible in the creation of 

towering buildings (Pan et al., (2020)). 

 

1.2 Tall Buildings in Modern Environment 
 

The 21st century has witnessed a notable increase in the 

rate of urbanization. Greater demand for vertical living 

and working spaces has resulted in people moving more 

and more to cities in search of employment prospects. 

As a result of their designs changing to meet various 

problems, tall buildings are no longer the exception but 

rather the rule. According to Ji et al. (2017), 

sustainability in the manufacturing sector becomes the 

most important factor to take into account when 

planning and constructing modern tall buildings. Their 

impact on the environment, including material and 

energy usage, is being closely examined in relation to 

these towering constructions. Using cutting-edge 

methods like green roofs, renewable energy, and high-

tech insulation materials, architects and engineers are 

lowering the carbon footprint of these massive 

structures. This is done from a manufacturing aspect. 

According to Li et al. (2018), creating resilient, livable, 

and environmentally conscious urban ecosystems is a 

critical goal in the pursuit of sustainability, which goes 

beyond energy efficiency alone. 

1.3 Architectural Creativity and Aesthetics 
 

Tall buildings represent a city's personality and 

aspirations and go beyond just practical constructions 

from a manufacturing aspect. As such, design is heavily 

influenced by aesthetics. Creating unique, eye-catching 

monuments that improve the urban environment is the 

goal of architects. Elshaer et al., (2017) cite the 

Shanghai Tower and the Burj Khalifa as two 

architectural marvels designed by Adrian Smith and Jun 

Xia that demonstrate the harmonious combination of 

mechanical expertise and artistic vision to create world-

famous skyscrapers. Furthermore, "vertical 

communities" are becoming more and more popular in 

the context of developing towering structures. More 

than just places to work or live, these structures are 

linked ecosystems that support residents' sense of well-

being and belonging. Facilities like sky gardens, social 

areas, and mixed-use developments are being 

incorporated more and more into the manufacturing of 

tall buildings in order to promote a feeling of 

community amidst extreme heights (Li et al., (2017)). 

 

1.4 Engineering Innovations and Structural 

Difficulties 
 

In order to meet certain obstacles, the manufacturing of tall 

structures must adopt modern technical solutions. Because 

of wind loads, seismic activity, and the sheer height of 

these structures, innovative manufacturing solutions are 

required. Modern production techniques, advanced 

computer-aided design and manufacturing systems, and 

advanced materials are used by manufacturers to guarantee 

the quality and safety of towering construction 

components. According to Oh et al. (2017), cooperation 

between engineering and manufacturing teams is crucial 

because their combined knowledge results in components 

that push the limits of what is technically possible. 

 

1.5 Future Tall Building Design: A Look Ahead 
 

Tall building manufacturing is always changing in 

response to trends in urbanization, advances in 

technology, and environmental concerns. Ideas like self-

sufficient skyscrapers, vertical forests, and even the 

incorporation of spaceports into these enormous 

buildings are what are next. The integration of artificial 

intelligence and the progression toward "smart cities" 

have the potential to significantly transform the 

manufacturing, management, and upkeep of tall 

buildings (Micheli et al., (2020)). 

 

1.6 Key Contributions 
 

• The study presents a new methodology, referred to 

as Dynamic Firefly-Tuned AdaBoost (DFT-

AdaBoost), as a means to overcome the constraints 

associated with traditional approaches in tall 

structure design. 
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• The research intends to optimize design factors 

such as material types, sizes, and shapes by 

iteratively utilizing the DFT-AdaBoost approach. 

Sustainable building practices necessitate 

minimizing construction waste, which can be 

achieved through optimization. 

• The study highlights the significance of manufacturing 

efficiency in the construction of tall buildings. 

• The reduction in manufacturing cost is listed as one of 

the tangible benefits. The determination of optimal 

design parameters leads to this cost savings. 

• The data set pertaining to a 35-storey structure was 

gathered, followed by a thorough analysis that 

encompassed several parameters like accuracy, 

manufacturing cost, drift ratio, demand-capacity 

ratio, and the strength-to-weight (SC/WB) ratio. 

 

The rest of this article is divided into the following 

sections: Section 2, Related Works; Section 3, The Optimal 

Problem Statement; Section 4, Enhancing Manufacturing 

Efficiency for Tall Building Design (Methodology); 

Section 5, Result; and Section 6, Conclusion. 

 

2. RELATED WORKS 
 

In this section, we provide a summary of existing 

research studies that focus on the analysis of methods to 

improve manufacturing efficiency in the construction of 

tall buildings. 

 

Elshaer et al. (2017) introduced a process for optimizing 

the aerodynamics of building corners, known as the 

Building Corner Aerodynamic Optimization process 

(AOP). The objective of their procedure was to minimize 

wind load by integrating three key components: an 

optimization algorithm, large eddy simulation (LES), and 

an artificial neural network (ANN) based surrogate model. 

Meng et al. (2018) aimed to conduct a comprehensive 

assessment of the changes in wind pressure coefficients 

among CAARC standard tall buildings through the use of 

computational fluid dynamics (CFD) simulations. To 

analyze and describe the patterns of wind pressure 

distribution over CAARC models, focusing on four distinct 

wind directions. Gan et al. (2017) evaluated and 

investigated the amount of embodied carbon present in tall 

buildings, taking into consideration many design factors 

such as construction material selection, incorporation of 

recycled materials, structural configurations, and building 

heights. Petrini et al. (2020) presented an innovative 

approach to designing an optimal Tuned Mass Damper and 

Inerter (TMDI) system. The objective was to enhance 

occupants' comfort in tall buildings that were vulnerable to 

the effects of vortex shedding caused by wind. 

Additionally, it investigated the potential of the optimal 

TMDI system in converting a portion of the wind-induced 

kinetic energy into usable electricity within tall buildings. 

Cruz and Miranda (2017) established the appropriate 

damping ratios that should be utilized in the seismic 

analysis of high-rise buildings. This was achieved by the 

application of linear elastic modal analysis and a fixed-base 

model, with the intention of accurately replicating the 

observed responses. 

 

Gan et al. (2018) created a comprehensive Building 

Information Modeling (BIM) framework that can 

effectively assess and discern environmentally friendly low-

carbon designs for tall buildings. The methodology that has 

been suggested possesses the capability to quantitatively 

assess and mitigate the embodied carbon emissions 

associated with construction materials, as well as the 

operational carbon emissions resulting from the energy 

consumption of buildings during their lifespan. Venanzi et 

al. (2018) introduced a theoretical framework for estimating 

life-cycle losses associated with non-structural damage in 

tall buildings subjected to wind and seismic stresses. The 

findings also indicated that wind load faces greater 

expenses in terms of damages caused by drift-dependent 

factors compared to seismic load. De Domenico et al. 

(2020) examined the seismic response of interconnected 

high-rise buildings fitted with an innovative MTMDI 

technology. An actual case study involving two high-rise 

buildings connected by a horizontal corridor has been used 

to perform based on performance optimization of MTMDI 

parameters utilizing a suite of 44 ground motion data from 

the FEMA P695 far-field record collection, each of which 

contains unique frequency content. Liew et al. (2019) 

examined the design and construction obstacles 

encountered in the implementation of modular construction 

techniques for high-rise buildings and proposed potential 

resolutions to address these issues. A study presented the 

introduction of a unique steel-concrete composite 

technology designed to effectively decrease the overall 

weight of the module while maintaining its structural 

integrity and rigidity. Ierimonti et al. (2017) presented an 

innovative method for Life Cycle Cost Analysis (LCCA) 

that builds upon the existing seismic engineering strategy. 

The proposed methodology aimed to assess the likelihood 

of non-structural damage and predict maintenance expenses 

for tall buildings. To achieve this, the methodology 

incorporates data on aerodynamic loads obtained from wind 

tunnel experiments conducted on a scaled-down model. 

 

Gan et al. (2017) established a methodology for the 

measurement and evaluation of the carbon footprint 

associated with tall structures. The findings of their study 

provided evidence for the development of a sustainable 

material procurement strategy aimed at mitigating the 

embodied carbon emissions associated with the 

construction industry. Tong et al. (2017) presented an 

initial attempt to comprehend and predict the vertical 

patterns of nighttime visibility (NV) in prominent cities 

across six climate zones in the United States. That was 

achieved by employing an internally developed 

atmospheric boundary layer (ABL) meteorology model. Lu 

et al. (2017) introduced a novel damping device, referred to 

as the Particle-Tuned Mass Damper (PTMD), which 

combines the principles of the standard Tuned Mass 

Damper (TMD) and particle damper. The impacts of wind-
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induced vibration control on high-rise buildings were 

comprehensively examined by an aero-elastic wind tunnel 

test. Ghazali et al. (2017) evaluated the viability of 

implementing a vertical photovoltaic system on a high-rise 

structure in Malaysia, with a specific emphasis on 

assessing its efficacy and conducting an economic 

evaluation. Weerasuriya et al., (2019) introduced a 

comprehensive BIM framework that assesses the natural 

ventilation capabilities of a 40-storey residential structure. 

The structure integrated Computational Fluid Dynamics 

(CFD) simulation, Building Energy Simulation (BES), and 

multi-zone-air-flow-modelling techniques. 

 

3. PROBLEM STATEMENT 

 
The following describes the general formula for 

optimizing seismic design in tall buildings. Traditional 

load and resistance factor design (LRFD) is used for the 

structural design process: 

 

3.1 Design for Serviceability 
 

According to the Canadian for Seismic Resistant Design 

of Buildings (Standards Association (CSA) S16), the 

following limitation must be met under design seismic 

forces for buildings that are more than five storeys high: 

𝐷𝑐∆𝑗≤ 0.02                                                        (1) 

Where 𝐷𝑐  denotes the amplifying factor responsible for 

the anticipated inelastic response 

 

3.2 Design for strength 
 

In accordance with the regulations outlined in the 

building code, it is imperative that the demand-capacity 

ratio, as specified in Equation (2), remains at or below a 

value of one for any load combination. 

𝑄𝑣

𝜙 𝑄𝑚
≤ 1                                                         (2) 

Where, 

𝜙 𝑄𝑚  denotes the design strength of every structural 

member and  

𝑄𝑣  denotes the necessary strength for every combination 

of LRFD loads. 

 

3.2 SC and WB 
 

In the construction of "Special Moment Frames 

(SMFs)," it is necessary for the moment ratio to meet 

the specified criteria at every connection point between 

a beam and a column. 

∑ 𝑁𝑜𝑎
∗

∑ 𝑁𝑜𝑑
∗ < 1                                                            (3) 

Where,  

∑𝑁𝑜𝑑
∗   denotes the columns' overall flexural strength 

when the axial force is reduced, and  

∑𝑁𝑜𝑎
∗   denotes the total flexural strength of all beams 

attached to the connection. 

3.4 Practical restrictions 
 

Column sizes on lower floors shouldn't be smaller than 

those on higher floors for practical reasons. It is possible 

to express this limitation as: 

𝑐𝑖,𝑗
𝑐𝑜𝑙 ≥ 𝑐𝑖+1,𝑗

𝑐𝑜𝑙 ,   𝑎𝑖,𝑗
𝑐𝑜𝑙 ≥ 𝑎𝑖+1,𝑗

𝑐𝑜𝑙 ,    𝑖 = 1,2, ⋯ , 𝑁𝑆 −

1;    𝑗 = 1,2, ⋯ , 𝑁𝐶,                                           (4) 

The vertical and horizontal dimensions of the section of 

the 𝑗𝑡ℎ column on the 𝑖𝑡ℎ level are denoted by 𝑐𝑖,𝑗
𝑐𝑜𝑙 , and 

𝑎𝑖,𝑗
𝑐𝑜𝑙  in Equation (4). The number of columns in each 

narrative is denoted by 𝑁𝐶, and the total number of 

stories is denoted by 𝑁𝑆. 

 

The objective function in the present design 

optimization problem pertains to the cumulative 

weight of the beams and columns within the three-

dimensional steel high-rise structure. The inequalities 

indicated above are utilized as constraints for 

optimization. Furthermore, the design criteria are 

applicable to the section properties of the structural 

components. The present study employs two 

fundamental methodologies to address the ensuing 

nonlinear restricted optimization problem. 

 

The initial technique under consideration is the meta-

heuristic optimization approach known as DFA. The 

second strategy involves the utilization of the AdaBoost 

method to ascertain nonlinear inequality constraints, as 

opposed to employing analytical methods that are more 

time-consuming. 

 
4. ENHANCING MANUFACTURING 

EFFICIENCY FOR TALL BUILDING 

DESIGN 
 

DFT-AdaBoost streamlines manufacturing procedures 

by optimizing structural design criteria for tall 

buildings. It improves structural efficiency by utilizing 

adaptive algorithms, cutting down on wasteful material 

usage and building time. This ground-breaking strategy 

transforms the architecture of towering buildings while 

guaranteeing economical and environmentally 

responsible construction. Figure 1 displays the overview 

of the tall building design. 

 

 

 

Figure 1. Enhancing manufacturing efficiency for tall 

building design 
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4.1 Model of Structure 
 

The subject of analysis is a steel office building situated 

in San Francisco, California, which stands at a height of 

35 stories (Wang and Mahin, (2018)). The dimensions 

of the tower are approximately 56 meters x 41 meters in 

plan, with a height of 150 meters. Both the vertical and 

horizontal axes of the structural system are supported by 

fully three-dimensional moment-resisting space frames. 

Figure 2 depicts the architectural plan of the building, 

including the standard floor height and bay widths. Prior 

to the Northridge earthquake, beam-to-column moment 

connections had their signature features, while partial 

penetration welds were used primarily in the column 

slice details. Both types of data are extremely sensitive. 

 

All above-ground parts of the structure were accounted 

for in the virtual representation. It was assumed for the 

purposes of this study that the ground-level boundary 

condition was a fixed base. Nonlinear beam-column 

components, based on displacement, were used to 

simulate the columns; these included “fiber sections and 

the Giuffré-Menegotto-Pinto material model (Steel02).” 

The assessment was conducted under the assumption 

that the old building's column splices, which made use 

of partial joint penetration welds, were replaced with 

full welds. 

 

The floor plans of this building are depicted in Figure 2, 

representing the standard layout. The layout is 

composed of six bays, each measuring 4 meters in 

length, as observed in both directions. The perimeter 

tube of the structure is composed of box sections for 

both the gravitational columns (RC) and the corner 

columns (OC). The remaining columns, namely E1C 

and E2C, are constructed using I-shaped sections. 

According to the information presented in Figure 2, 

there exist two distinct categories of non-corner 

perimeter columns. The initial classification, denoted as 

E1C columns, is exclusively linked to the perimeter 

beams on both sides. The second type, referred to as 

E2C columns, is also associated with the pin-ended 

gravitational beams (RB). The spandrel beams, denoted 

as SB, are characterized by fixed-ended supports and 

possess a length of 4 meters. Furthermore, it should be 

noted that both gravitational beams, namely RB and 

IRB, possess pin-ended configurations and have a 

uniform length of 8 meters. As depicted in Figure 2, 

IRB beams serve the purpose of linking the gravitational 

columns, whereas GB beams are responsible for 

connecting the gravitational columns to the perimeter 

tube. 

 

Force-based nonlinear beam-column elements with 

finite-length plastic hinges at both ends were used to 

simulate the beams. The moment-curvature relationship 

of the beams was deemed "brittle" when a hysteretic 

material model was applied to it. The constructed model 

incorporated constraints on the upper and lower bounds 

of rotational capabilities in accordance with the 

regulations specified in ASCE 41. The design lacks the 

inclusion of panel zones, the perimeter precast concrete 

façade, as well as non-constructional components like 

elevator core walls and changeable interior partitions. 

The first three elastic modal periods of the structure, 

which involved retrofits at Level-1, were found to be 

4.33 seconds for translation in the X-direction, 4.18 

seconds for translation in the “Y-direction, and 3.59 

seconds for rotation.” 

 

 

Figure 2. Illustration of the model building 

 

4.2 Decision Variables 

 
This study examines the continuous nature of the 

decision variables in relation to the sections' attributes. 

The quantity of design variables significantly decreases 

by establishing rational equations that establish a 

relationship between the dimensions of the section and 

its depth. This study aims to establish linear equations 

that establish the relationship between the dimensions of 

sections and their depths based on Dolor-standard 

sections. Equations (5) and (6) illustrate the relevant 

mathematical expressions that govern the behavior of I-

shape sections in the non-corner columns of the 

perimeter tube and beams. 

𝑎𝑒 = 𝑐,  

𝑠𝑒 = 0.056𝑐 + 0.36  (5) 

𝑠𝑥 = 0.016𝑐 + 0.7  

𝑎𝑒 = 0.36𝑐 + 3.4,  

𝑠𝑒 = 0.027𝑐 + 0.34  (6) 

𝑠𝑥 = 0.017𝑐 + 0.26  

Equations (5) and (6) define the variables used in the 

analysis. Within this particular context, the variable 𝑐 is 

utilized to represent the section depth, 𝑎𝑒 is employed to 

signify the flange width, 𝑠𝑒  is utilized to represent the 

flange thickness, and 𝑠𝑥 is employed to designate the 

web thickness. 

As already mentioned, the corners and gravitational 

columns are characterized by portions with a box shape. 
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The Equation that describes the relationship between the 

width (𝑠) of the box section and its depth (𝑐) is stated 

as follows. 

𝑠 = 0.06                                               (7) 

4.3 Dynamic Firefly Optimization (DFO) 
 

In comparison to other metaheuristics, the DFO has 

been demonstrated to perform better; nonetheless, it is 

not without its restrictions and has a threshold. The 

parameters of the model are predetermined and 

demonstrate efficacy when applied to functions with 

limited dimensions and a small number of variables. 

Initial fixed-value parameters may be inappropriate in 

optimization scenarios with many design variables and 

design constraints, reducing the effectiveness of the 

method. Figure 3 displays the general flow of dynamic 

firefly optimization. 

 

 

Figure 3. Dynamic Firefly optimization 

 

In small-scale optimization problems with a limited 

number of design variables, the closeness of fireflies is 

an important metric, and the parameter is meaningful. In 

contrast, while dealing with high-dimensional and large-

sized issues, the proximity of neighboring fireflies 

becomes very remote, leading to a reduction in the value 

of 𝛽. The efficiency of the algorithm is notably 

inadequate, particularly when dealing with optimization 

issues of significant scale, due to the direct correlation 

between attractiveness and firefly brightness. Therefore, 

in order to address this disparity, the subsequent 

methodology for improving attractiveness is presented 

in Equation (8). 

𝛽(𝑞) = (𝛽0 − 𝛽𝑚𝑖𝑛) ∗ 𝑓(−𝛾(𝑖𝑡𝑒𝑟)𝑞𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 
2 ) + 𝛽𝑚𝑖𝑛   (8) 

Where,  

𝛽0 Represents the level of attractiveness of the firefly in 

its initial location and is assigned a value of 1.0. 

 

The value of 𝛽𝑚𝑖𝑛 , representing the minimal 

attractiveness of the firefly, is set at 0.1, a rather tiny 

magnitude. 

 

The term 𝑞𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 refers to the distance that has been 

normalized. 

 

𝛾𝑖𝑡𝑒𝑟  Represents the increased absorption coefficient 

The values were determined and established using 

Equations (9) and (10) as the respective calculation and 

definition methods. 

𝑞𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑞𝑗𝑖

𝑞𝑚𝑎𝑥
    

       

Where, 

𝑞𝑗𝑖 =  √∑ (𝑆𝑒𝑐𝑡𝑗
𝑙 − 𝑆𝑒𝑐𝑡𝑗

𝑙)
2𝑚ℎ

𝑙=−1  𝑎𝑛𝑑 𝑞𝑚𝑎𝑥 =

 √∑ (𝐿𝑖𝑚𝑖𝑡𝑈𝑝𝑠𝑒𝑐𝑡 − 𝐿𝑖𝑚𝑖𝑡𝐿𝑜𝑤𝑆𝑒𝑐𝑡)2𝑚ℎ
𝑙=1           (9)  

𝛾(𝑖𝑡𝑒𝑟) = 𝛾𝑚𝑎𝑥 − [(√
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) ∗ (𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛)]   (10) 

Where, 

The variable 𝛾𝑖𝑡𝑒𝑟  represents the current value of the 

absorption coefficient, 𝑖𝑡𝑒𝑟. 

 

The absorption coefficient values, 𝛾𝑚𝑎𝑥, and 𝛾𝑚𝑖𝑛 , are 

defined in the method as the maximum and minimum 

values, respectively. 

 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥   is the upper limit for the number of iterations 

during which the tolerance minimization operation is 

executed. 

 

Equation (10) guarantees that the absorption coefficient 

values are initially higher during the early stages of the 

design cycles and gradually decrease towards the later 

stages of the design cycles. In this manner, the value of 

γ is dynamically modified based on Equation (10), 

which is initially established at the commencement of 

the conventional algorithm and remains constant during 

the search process. 

 

The primary rule entails the implementation of a proficient 

algorithm that possesses the ability to effectively balance 

its exploration and exploitation skills. The algorithm's 

capacity to explore enables it to avoid being confined to a 

local optimum by doing a comprehensive search of the 

whole solution space. Therefore, the act of flying in a 

random manner enables the firefly to engage in a more 

comprehensive and investigative search, thereby 

facilitating its ability to navigate to novel and potentially 

distant areas within the search environment. In addition, a 

local search strategy aims to utilize the search process 

further. The proposed method involves perturbing a firefly 

sample taken from the existing population near its current 

solution. This disruption facilitates the firefly's exploration 

of adjacent locations, potentially impeding the convergence 

of fireflies towards the global optimum. 

 

A comparable formulation is applied to the randomness 

parameter (𝛼) as described in Equation (11) in order to 

achieve a wide exploration of the search space. This is 

accomplished by assigning a higher value to 𝛼, 

particularly in the initial stages, and gradually 

decreasing its value in the later stages to facilitate 

improved convergence. 

𝛼(𝑖𝑡𝑒𝑟) = 𝛼𝑚𝑎𝑥 − [(√
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) ∗ (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)]    (11) 
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Where, 

The value of the randomness parameter, denoted 

as 𝛼𝑖𝑡𝑒𝑟, represents the value of the randomness 

parameter in the 𝑖𝑡𝑒𝑟. 

 

The variables 𝛼𝑚𝑎𝑥 and 𝛼𝑚𝑖𝑛 are the upper and lower 

bounds of the randomness parameter values that are 

specifically defined within the method. 

 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥  represents the maximum number of iterations at 

which the tolerance minimization operation will proceed. 

 

Fireflies exhibit a behavior known as improvising of 

movement, wherein they select new parts and develop 

new designs. This phenomenon can be described using 

Equation (12). 

𝑆𝑒𝑐𝑡𝑗
𝑙 = 𝑆𝑒𝑐𝑡𝑗

𝑙 + 𝛽(𝑞) ∗ (𝑆𝑒𝑐𝑡𝑖
𝑙 − 𝑆𝑒𝑐𝑡𝑗

𝑙) + 𝛼(𝑖𝑡𝑒𝑟) ∗

(𝑟𝑎𝑛𝑑 − 0.5)        𝑖, 𝑗 = (1,2, … , 𝑚) 𝑎𝑛𝑑 𝑙 =
((1,2, … , 𝑚ℎ)                (12) 

Where, 

The variable "𝑆𝑒𝑐𝑡𝑗
𝑙" the numerical value, denotes the 

specific part of the profile chosen by the firefly "𝑗" for 

the "𝑙𝑡ℎ" firefly. 

 

The function 𝛽(𝑟) represents the improved 

attractiveness method. 

 

The variable 𝛼𝑖𝑡𝑒𝑟  represents the modification of the 

randomness parameter. 

 

The variable "𝑟𝑎𝑛𝑑" represents a random number 

generator that follows a uniform distribution inside the 

interval [0,1]. 
 

Upon the completion of the movements of all fireflies, 

one cycle is concluded. 

 

4.4 Adaptive Boosting (AdaBoost) 
 

The AdaBoost algorithm is commonly referred to as 

Adaptive Boosting. AdaBoost is a meta-algorithm that 

involves training many weak classifiers using a training set 

and afterward combining them to create a strong classifier. 

The weak classifier, represented as 𝑔(𝑤, 𝑒, 𝑜, 𝜃), is 

composed of a feature (𝑒), a threshold (𝜃), and a polarity 

(𝑜) that determines the direction of the inequality. 

𝑔(𝑤, 𝑒, 𝑜, 𝜃) = {
+1 𝑖𝑓 𝑜𝑒(𝑤) < 𝑜𝜃

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (13) 

A robust AdaBoost classifier can be constructed using 

the linear aggregation of many weak classifiers, with 

each weak classifier assigned its own weight. During 

the training phase of AdaBoost, the error rate of each 

weak classifier is observed in each iteration and 

subsequently modified. The weak classifiers that exhibit 

lower mistake rates are assigned greater weights in the 

linear combination. Furthermore, it is worth noting that 

each training sample possesses its own individual 

weight. The misclassified samples are assigned larger 

weights, which encourages weak classifiers to prioritize 

their correct classification in subsequent iterations. The 

AdaBoost training method is characterized by a 

comprehensive and intricate description. Initially, a 

collection of training instances is taken into account, 

encompassing both affirmative and negative instances. 

The positive samples are denoted by the label +1, 

whereas the negative samples are denoted by the label -

1, as represented by the following expression: 

𝑇 = (𝑤1, 𝑧1), (𝑤2, 𝑧2), (𝑤3, 𝑧3), … … , (𝑤𝑛, 𝑧𝑛), 𝑤𝑗 ∈

𝑊, 𝑧𝑗  ∈ {1, −1}.                 (14) 

Additionally, the weights of each training sample are 

initialized. Given the absence of initial error rate 

information, equal weights are assigned to each of the 

samples. The process of initialization is carried out in 

the following manner: 

𝐶1(𝑗) =
1

𝑛
, 𝑗 = 1, … . , 𝑛   (15) 

Where, 

The variable 𝐶1(𝑗) represents the weight assigned to the 

sample i during the initial iteration. 

 

Next, the training process commences iteratively. We 

employ 𝑆 iterations corresponding to the 𝑆 weak 

classifiers being evaluated. This can be formulated as an 

optimization problem. 

 𝐹𝑜𝑟 𝑠 = 1, ⋯ , 𝑆, 𝑓𝑖𝑛𝑑 𝑎 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 

𝑔𝑠: 𝑊 ⟶ {−1, +1}   (16) 

This aims to minimize the error in relation to the 

variable 𝐶𝑠, that is 

𝑔𝑠 = arg
𝑔𝑖

min 𝜀𝑖   (17) 

Where 

𝜀𝑖 = ∑ 𝐶𝑠(𝑗)[𝑧𝑗 ≠ 𝑔𝑖(𝑤𝑗)]𝑛
𝑗=1   (18) 

The term 𝑔𝑗 is indicative of a classifier that possesses 

little strength. 

 

During each cycle, the weights of the weak classifiers 

are adjusted by a specific process. 

𝛼𝑠 =
1

2
1𝑚

1−𝜀𝑠

𝜀𝑠
    (19) 

Additionally, in order to provide misclassified samples 

with a greater opportunity for learning, the distribution 

of the samples is modified in each iteration by: 

𝐶𝑠+1(𝑗) =
𝐶𝑠(𝑗) exp[−∝𝑠𝑧𝑗𝑔𝑠(𝑤𝑗)]

𝑌𝑠
  (20) 

Where, 

The variable 𝑌𝑠 is employed for the purpose of 

normalization. 

 

Ultimately, the construction of a robust classifier 𝐺(𝑊) 

can be achieved by: 

𝑠𝑖𝑔𝑛 (𝐺(𝑤) = ∑ ∝𝑠 𝑔𝑠(𝑤)𝑆
𝑠=1 )  (21) 
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4.5 Dynamic Firefly-Tuned AdaBoost (DFT-

AdaBoost) 
 

DFT-AdaBoost is a cutting-edge strategy that could 

revolutionize the production effectiveness of tall 

building designs. Algorithm 1 describes the DFT-

AdaBoost algorithm. Building design and 

construction are frequently difficult, time-consuming 

operations in the field of architectural engineering. 

This ground-breaking approach combines the strength 

of two cutting-edge algorithms, Dynamic Firefly 

optimization, and AdaBoost, to handle the unique 

difficulties presented by tall structure design. 

 

The most effective method for finding the ideal 

design parameters is called DFT, which takes its 

name from the swarming activity of fireflies. This 

program allows for the exploration of a large design 

area in search of the most effective and structurally 

sound solutions by imitating the way that fireflies 

communicate and change their brightness to attract 

mates. The design process may be continuously 

adjusted and fine-tuned thanks to its dynamic 

character, which guarantees that it is responsive to 

shifting restrictions and requirements. The machine 

learning ensemble technique AdaBoost, on the other 

hand, is exceptional at classification tasks. It can be 

used to examine and improve a number of factors, 

including energy effectiveness, structural integrity, 

and environmental impact, in the context of designing 

tall buildings. AdaBoost is integrated into the system 

so that it may learn from previous data and make 

decisions based on that knowledge throughout the 

design process, ultimately producing more 

sustainable and energy-efficient tall structures. 

 

In this hybrid approach, the interaction of DFT-

AdaBoost enables architects and engineers to greatly 

increase manufacturing efficiency. It makes it 

possible to quickly produce creative design solutions 

that are tailored to fulfill both functional and 

sustainability objectives. In the end, this technology 

has the ability to lower construction costs, accelerate 

project completion, and aid in the creation of iconic 

tall structures that are not only visually appealing but 

also environmentally friendly. 

 

Algorithm 1: Dynamic Firefly-Tuned AdaBoost 

(DFT-AdaBoost)     

Step 1: Initialize design parameters and data 

Step 2: Initialize fireflies randomly 

Step 3: Initialize the AdaBoost ensemble 

Step 4: Set maximum iterations or convergence criteria 

Step 5: While not converged or maximum iterations not 

reached: 

   Step 6: Evaluate the fitness of each firefly based on 

design parameters 

   Step 7: Update the brightness of fireflies based on 

fitness 

   Step 8: Perform AdaBoost ensemble learning on the 

current design parameters 

   Step 9: Update the design parameters based on 

AdaBoost predictions 

Step 10: End While 

Step 11: Select the best design parameters found 

Step 12: Output the optimized tall building design 

 

5. PERFORMANCE ANALYSIS 
 

This section provides a thorough examination of the 

best configurations and seismic behavior of the 35-

storey framed tube system. The optimization process 

for the 35-storey structure involves a total of 44 

decision factors. The depths of the sections in the 

ideal designs linked to the 35-storey structure, 

including both systems. 

 

The concept of "drift ratio" within the realm of tall 

building design predominantly relates to the field of 

structural engineering and holds significant 

importance in guaranteeing the security, stability, and 

effectiveness of lofty edifices, such as skyscrapers. 

The drift ratio is a metric used to quantify the 

horizontal displacement or movement encountered by 

a structure during dynamic occurrences such as wind-

induced forces or seismic events. The ratio of a 

point's lateral displacement, also known as drift, to 

that point's height above the structure's base, is 

known as the drift ratio. Table 1 and Figure 4 

illustrate the inter-storey drift ratios pertaining to the 

optimal design considerations for the 35-storey 

building.  

𝐷𝑟𝑖𝑓𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝐻𝑒𝑖𝑔ℎ𝑡
                  (22) 

 

Figure 4. Drift Ratio for 35-Storey Building 
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Table 1. Drift Ratio for 35-Storey Building 

Storey 1 2 3 4 5 6 7 8 9 10 

Drift 

Ratio 

0.005 0.012 0.015 0.017 0.017 0.017 0.017 0.017 0.017 0.017 

Storey 11 12 13 14 15 16 17 18 18 20 

Drift 

Ratio 

0.018 0.018 0.018 0.0185 0.0185 0.018 0.018 0.018 0.018 0.019 

Storey 21 22 23 24 25 26 27 28 29 30 

Drift 

Ratio 

0.019 0.019 0.02 0.02 0.02 0.02 0.02 0.019 0.02 0.02 

Storey 31 32 33 34 35 - 

Drift 

Ratio 

0.019 0.0185 0.02 0.02 0.019 

 

In urban planning and civil engineering, the demand-

capacity ratio (DCR) is a widely used concept, 

especially in relation to zoning and building rules. It 

assists in ascertaining whether the planned 

construction or development project complies with 

regional zoning laws and regulations. The DCR is 

determined by contrasting the capacity of specific 

resources or services that are available locally with 

the demand for those resources or services that are 

produced by a project. Table 2 and Figure 5 illustrate 

the inter-storey Demand-capacity ratio pertaining to 

the optimal design considerations for the 35-storey 

building. 

𝐷𝐶𝑅 =
𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡𝑎𝑙𝑙 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔

 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
   (23) 

 

 
Figure 5. Demand-capacity ratio for 35 Storey Building 

 

Table 2. Drift Ratio for 35-Storey Building. 

Column & Beam (OC) 1 2 3 4 5 6 7 8 

Demand - Capacity 

Ratio 

1 1 1 1 1 1 1 0.8 

Column & Beam (E2C) 1 2 3 4 5 6 7 8 

Demand - Capacity 

Ratio 

0.8 0.7 0.7 0.65 0.65 0.6 0.6 0.55 

Column & Beam (E1C) 1 2 3 4 5 6 7 8 

Demand - Capacity 

Ratio 

0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.5 

Column & Beam (RC) 1 2 3 4 5 6 7 8 

Demand - Capacity 

Ratio 

1 1 1 1 1 1 1 1 

Column & Beam (SB) 1 2 3 4 5 6 7 8 

Demand - Capacity 

Ratio 

0.98 1 1 1 1 1 0.9 0.9 

Column & Beam (RB 

and IRB) 

1 2 1 2 - 

Demand - Capacity 

Ratio 

1 1 1 1 

 

Improving the manufacturing efficiency of tall building 

design depends on a number of factors, one of the most 

important of which is the stability of the columns. Sturdy 

columns are crucial to the stability and safety of tall 

buildings because they bear the weight of the building's 

vertical load. Designing tall buildings with weak beams 

can improve production efficiency without compromising 

safety. In order to save both time and resources, weak 

beams are often made with a smaller cross-section than 

primary beams. Table 3 and Figure 6 illustrate the inter-

storey SC/WB ratio pertaining to the optimal design 

considerations for the 35-storey building. 
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Table 3. Drift Ratio for 35-Storey Building. 

Columns 

(OC) 

1 2 3 4 5 6 7 8 

SC/WB Ratio 0.05 0.1 0.15 0.2 0.3 0.4 0.5 1 

Columns 

(E2C) 

1 2 3 4 5 6 7 8 

SC/WB Ratio 1 1 1 1 1 1 1 1 

Columns 

(E1C) 

1 2 3 4 5 6 7 8 

SC/WB Ratio 0.9 1 1 1 1 1 1 1 

 
 

Figure 6. SC/WB ratio for 35 Storey Building 

 

We evaluate the Manufacturing cost of the proposed 

method in tall building design by comparing it with other 

methods, such as the Tabu search algorithm (TS) [27] and 

Evolutionary structural optimization (ESO) [28].  

 

The optimization of manufacturing efficiency for tall 

building design necessitates the implementation of a 

range of tactics and technologies with the objective of 

rationalizing the construction process and reducing 

expenses. The optimization of many components of the 

construction process is crucial in order to mitigate the 

substantial manufacturing costs associated with tall 

structure design. Figure 7 shows the comparison of 

manufacturing costs. 

 

 
Figure 7. Comparison manufacturing cost 

Improving tall building design manufacturing efficiency is 

a multifaceted process, and attaining the intended gains 

requires precise measurement. It is crucial to remember 

that the term "accuracy" can have several connotations and 

uses based on the particular context of tall structure design 

and construction procedures. Table 4 and Figure 8 show 

the accuracy of the tall building design. 

 

Table 4. Accuracy for tall building design. 

Epoch Accuracy (%) 

1 91 

2 95.5 

3 96.5 

4 97.4 

5 97.2 

6 98 

7 98.4 

8 98 

9 98.2 

10 98.8 

 

 
Figure 8. Accuracy for tall building design 

 

6. CONCLUSION 
 

Building skyscrapers has become a common sight in 

modern cities during a period of rapid urbanization and 

increasing demand for sustainable infrastructure. We 

presented a novel approach to overcome the shortcomings 

of traditional tall building design methodologies: dynamic 
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firefly-tuned AdaBoost (DFT-AdaBoost). The objective 

was to improve the sustainability and safety aspects of tall 

building design while simultaneously increasing 

manufacturing efficiency. Iteratively, the DFO was used to 

change different design factors, such as material types, 

sizes, and forms. Conversely, AdaBoosting is employed to 

enhance the model's projected accuracy. This 

methodology's iterative nature makes it possible to 

continuously enhance design solutions and achieve the 

required level of manufacturing efficiency. The study's 

conclusions showed significant improvements in 

manufacturing efficiency with regard to tall building 

construction. Reducing material waste and manufacturing 

costs can be achieved by identifying optimal design 

parameters through the application of the DFT-AdaBoost 

approach. When weak classifiers are overly complex, 

AdaBoosting may overfit, which reduces performance and 

makes it more vulnerable to outliers and noisy data. We 

want to develop an innovative method in the future to 

address these restrictions. 
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