
1Corresponding author: Dhyan Chandra Yadav

 Email: dc9532105114@gmail.com 363

Vol. 06, No. 1 (2024) 363-372, doi: 10.24874/PES.SI.24.02.019

Proceedings on Engineering

Sciences

www.pesjournal.net

COMPUTERIZED SOFTWARE QUALITY

EVALUATION WITH NOVEL ARTIFICIAL

INTELLIGENCE APPROACH

Dhyan Chandra Yadav1

Yaduvir Singh

Arvind Kumar Pandey

A Kannagi

Received 17.11.2023.

Received in revised form 17.01.2024.
Accepted 26.01.2024.

UDC – 004.8

Keywords:

Artificial Intelligence (AI), Software

Quality, Software quality assurance

(SQA), Software fault prediction (SFP),

Software Quality prediction.

A B S T R A C T

Software quality assurance has grown in importance in the fast-paced world

of software development. One of trickiest parts of creating and maintaining

software is predicting how well it will perform. The term "computer

evaluation" refers to use of advanced AI techniques in software quality

assurance, replacing human evaluations and paving the way for a new era in

software evaluation. We proposed Hybrid Elephant herding optimized

Conditional Long short-term memory (HEHO-CLSTM) to estimate Software

Quality Prediction. Software quality prediction and assurance has grown in

importance in ever-changing world of software development. Software quality

prediction encompasses a wide range of activities aimed at improving the

quality of software systems via the use of data-driven approaches for

prediction, evaluation and enhancement. We have collected Software Defects

data and we feature extracted the attributes using linear discriminant

Analysis (LDA). The suggested system improves the accuracy, AUC and

Buggy instance compared with the current methods.

© 2024 Published by Faculty of Engineeringg

1. INTRODUCTION

Software quality assurance (SQA) is an approach for

overseeing and controlling the production of software to

ensure that it meets the specifications while keeping costs

down. The use of software testing, software failure

prediction and formal code inspections are the possibilities.

Software fault forecasting is an effort to maximize the

efficiency with which limited SQA resources are used by

predicting the problem-proneness of program components

(Rathore and Kumar (2019)). Finding and resolving bugs is

one of the most time-consuming and expensive aspects of

developing embedded software. In automotive embedded

systems quality monitoring along with fulfillment presents

significant challenges due to infrastructure complexity,

scale, cost and time constraints. It is essential to maintain

the highest standards of quality and dependability (Thota et

al., (2020)). Several methods for predicting defects have

been developed during the past couple of decades in an

attempt to improve software quality. Machine learning is

used more often. It is possible to classify these strategies as

either supervised (requiring labels, whether they are right

or not) or unsupervised (not requiring labels). Most models

of prediction need some human intervention. Software

Yadav et al., Computerized software quality evaluation with novel artificial intelligence approach

 364

defect prediction (SDP) models need defect categorization

labels for training, but these might be hard in reality. There

has been a lot of interest in Unsupervised Defect Prediction

(UnSDP) models recently (Li et al., (2020)). The term

electromagnetic interference (EMI) is used to describe the

unintentional transfer of energy between two circuits or

systems, whether that energy is radiated through space or

conducted through grounding, power or signal conductor.

It's not a new problem for electronics to have EMI

interference. When (analog) electronics were first

developed, creating side effects was a significant worry

(Herbold (2019)).

The quality and reliability of software are under

increasing strain as processing power rises with the

amount and complexity of software. Companies must

invest time and money into hiring quality assurance staff

to inspect their software for bugs (Zhu et al., (2021)). But

to uncover as many defects as possible, software testing

takes a lot of time to complete different test cases,

making it unfeasible to run the test for the whole project

when resources are limited and deadlines are short. SDP

has been proposed to speed up the discovery of faulty

code by the assurance team while reducing the time and

money spent on software testing (Deng et al., (2020)).

Studying mining software repositories (MSR) mining has

grown in popularity as a method for finding valuable data

on software systems and projects. Central to model-

driven software development is the construction of

prediction models, which in turn requires massive

amounts of labeled data. While studies on the

repercussions of inaccurate labels are lacking, it is

nevertheless essential to consider marking accuracy while

creating a predictive model. The present research

investigates the consequences of mislabeled cases for

prediction, which is necessary since locating SBRs in a

giant bug library is critical for reducing computer product

safety risks (Wu et al., (2021)).

The last decade has seen a shift in emphasis towards

software-based systems, with the quality of the software

itself seen as the most critical factor in the success of the

system. Due to the high volume of produced application

software, poor-quality software needs to be made for

public and private usage. During the development phase,

businesses use defect prediction design models to aid in

fault prediction, effort estimation, software reliability

testing, hazard analysis and other similar tasks (Prabha and

Shivakumar (2020)). Developers must adhere to functional

and non-functional quality standards in software

development. Poor software quality is caused by the

absence of non-functional quality requirements, which in

turn increases the complexity and effort required for

maintenance and evolution owing to the programmed

design's inherent weakness. The phrase code smells is used

to characterize poor software implementation architecture

(Mhawish and Gupta (2020)). The objective of the research

team behind this project set out to discover and use a new

AI-based computerized software quality assessment

methodology. Through the implementation of novel

approaches, with an emphasis on cutting-edge AI

techniques, this project intends to improve software quality

assurance. The aim of this study is to determine how well

the proposed technique, Hybrid Elephant herding

optimized Conditional Long short-term memory (HEHO-

CLSTM), can accurately predict software quality. A more

effective and trustworthy software quality assurance

procedure is the end aim and current approaches are a

starting point.

1.1 Contributions of the study

• This research solves the problems of software

performance prediction, which is a major step

forward for software quality assurance. A

groundbreaking development in software quality

prediction, Hybrid Elephant herding optimized

Conditional Long short-term memory (HEHO-

CLSTM) employs state-of-the-art AI techniques.

• Accuracy, area under the curve (AUC) and the

detection of instances that include bugs are

improved by the use of data-driven methodologies,

notably linear discriminant analysis (LDA).

• This forward-thinking work highlights the growing

relevance of software quality prediction in the ever-

changing environment of software development. It

highlights the need of using modern approaches to

guarantee the dependability and performance of

software systems.

In the section 2 of the paper, we combine a thorough

literature review for background and insight. Section 3

provides a deeper dive into the approach. In Section 4,

we present an in-depth evaluation and of the results.

Section 5 discussions and in the section 6, the relevance

of the conclusion is discussed in depth.

2. RELATED WORKS

Massoudi et al., (2021) analysed that they use five open-

source datasets that can be found in the Promise Data

Repository. The prediction of software defects was an

essential component in ensuring the quality of

programming. Methods of deep learning can be used for

the purposes above. To carry out this comparison

analysis, they make use of five open-source datasets that

can be found in the Promise Data Repository. The

prediction of software defects was an essential

component in ensuring the quality of programming.

Methods based on deep learning can be used for the

reasons listed above. Wu et al., (2021) described the high-

impact bug report (HBR) prediction, which has seen a

number of machine learning-based techniques put out in

recent years. Supervised computer learning was the basis

for the majority of them. It can be challenging to get

sufficient quantities of labeled data, which were

fundamental to the actual application of machine

learning. Issues discovered during software development

and maintenance was documented in bug reports.

Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 363-372, doi: 10.24874/PES.SI.24.02.019

365

An HBR explains a problem that, if it arises after

deployment, might result in significant harm. To guarantee

the quality of the software, it was essential to locate HBRs

in the bug repository as soon as was practical. Radu (2019)

evaluated a number of scholars and practitioners who have

developed different estimating strategies in recent years.

Since there were a lot of unknown factors in the software

development process, some projects continue to fail

because the budget and timeline were not adequately

forecasted. Since many businesses had embraced agile

approaches, the success rate of software projects has

grown. The primary cause of the failure has switched from

the creation and comprehension of the criteria to erroneous

effort estimate as a result of their adaptability and ongoing

customer contact.

Farid et al., (2021) discussed the significant efforts

made by the software industry to raise the quality of

software inside businesses. Developers and white box

testers save time and effort by identifying flaws sooner

with the aid of proactive software defect prediction.

Code complexity, lines of code and other conventional

source code characteristics were the focus of traditional

software fault prediction models. Khuat and Le (2020)

assessed the maintainability of source code from three

distinct projects in collaboration with qualified quality

analysts. Next, using code metrics, they trained machine

learning algorithms to forecast how programmed classes

would be evaluated for human maintainability. Tools for

static code analysis were the standard for controlling

and monitoring the quality of a software system. These

tools provide a multitude of metrics, which the

developers must evaluate to get insight into the true

quality of the product. Pascarella et al., (2019)

determined if each code patch that a developer submits

has a software flaw or not. The technique has the benefit

of being quick and simple to monitor. The worst

problem was that the data set category imbalance has an

impact on Just-in-Time software's forecasting reliability.

Aziz et al., (2019) examined the extent to which

inheritance metrics aid in the prediction of software

fault proneness. Software bugs can range from minor

irritations to catastrophic errors. Software fault

prediction (SFP) research from recent times suggests

that to facilitate testing, defects should be predicted

before deployment. Object-oriented programming was

more intricate than procedural languages, which include

many dimensions and inheritance as a critical

component. Rizwan et al., (2019) examined the

performance metrics of 14 commonly used, non-graphic

classifiers utilized in software failure prediction (SFP)

investigations. Evaluating the software's quality was a

crucial and challenging task. SFP models have been

employed for this purpose. But deciding which model to

use and which among many models was the best

depends on the performance metrics. Kurniawan et al.,

(2021) discussed forecasting water quality parameters,

including dissolved oxygen (DO), in the watershed

system. For effective management of water resources,

accurate water quality prediction was essential. The data

on water quality parameters was non-stationary,

unpredictable and nonlinear; to get over these issues, a

hybrid model that employed synchrosqueezed wavelet

transform (SWT) was used to denoise the original data.

3. METHODOLOGY

By using state-of-the-art AI techniques, An Innovative

AI-powered system for Evaluating Software Quality

completely revamps conventional quality assessment

methods. To evaluate software quality metrics in a more

thorough and precise manner, this novel method makes

use of state-of-the-art algorithms and machine learning

models. This approach improves software dependability

by using AI not only to find and fix bugs but also to

anticipate as well as to prevent future problems. The

incorporation of new methods guarantees flexibility to

changing software environments, which is a giant step

forward in the quest for effective and efficient quality

assurance in the domain of computerized systems.

3.1 Dataset

A feasible, research-based repository calledEvidence-

Based Software Portfolio Management (EBSPM) enables

software organizations in actively enhancing their software

delivery portfolio. To encourage innovation in software

development inside an organization, the EBSPM attempts

to benchmark, evaluate, and appraise related applications

based on of costs, duration, features, and defect counts.

3.2 Feature extraction using linear discriminate

Analysis (LDA)

After the data was acquired using LDA, the data was

retrieved from it. Fisher established LDA as one of the

first methods of discriminate analysis. Each class's

probability distribution is assumed to be Gaussian

(standard) in this procedure. In addition to the normalcy

hypothesis, define a priori probabilities by the

LDA. 𝜋𝑖every single J class. The learning set can calculate

this probability, for instance, as,𝑀𝑖/𝑀For all types set is

equal. The second strategy is used in this study. The Bayes

rule allocates each sample to the group with the most

excellent posterior probability. The class 𝑗 that generates

the most negligible value of each component is indicated

and 𝐶𝑖 is based on the assumptions above in Eq. (1).

𝐶𝐽 = (𝑋𝑖 − 𝜇𝑗)
𝑡

∑ (𝑥𝑖 − 𝜇𝑗) + 𝑙𝑜𝑔|Σ|−1 − 2𝑙𝑜𝑔(𝜋𝑖) (1)

Where 𝜇𝑗𝑆 represents the class means, while the group

refers to the variance-covariance matrix shared by all

types. Mahalanobis distances are subjected to this

requirement if the prior probability for each class is the

same. The mean and covariance matrices must be

estimated using the data. The group typically means 𝑥𝑗

is employed to establish the standards. The expected

covariance matrix is calculated using the following

value in Eq. (2):

Yadav et al., Computerized software quality evaluation with novel artificial intelligence approach

 366

 𝑇 = ∑
(𝑁𝑗−1)𝑇𝑖

(𝑁−𝐽)

𝑗
𝑗=1 (2)

Where 𝑇𝑖 is the class𝑖 empirical variance-covariance

matrix, the critical drawback of LDA's is that it needs a

covariance matrix with good conditioning. This

indicates that the approach is inapplicable, not when

there are more than a few variables or when the

variables are strongly linked.

3.3 Computerized Software using Hybrid

Elephant herding optimized Conditional

Long short-term memory (HEHO-CLSTM)

An advanced algorithm for data analysis and prediction, the

HEHO-CLSTM is novel and complex. This state-of-the-art

model integrates the best features of conditional long short-

term memory networks with those of hybrid elephant

herding methods. With these components, HEHO-CLSTM

hopes to improve forecast accuracy and flexibility on

various datasets. The programme is able to traverse

complicated data landscapes because of the one-of-a-kind

combination of modern neural network architecture with

the principles of elephant herding. For sectors that need

accurate forecasts, HEHO-CLSTM is an excellent option

since it is at the cutting edge of predictive analytics.

3.3.1 Conditional Long short-term memory

(CLSTM)

The suggested architecture relies on CLSTMs to

translate video frame descriptions into textual

narration. Conditional Long Short-Term Memory

(CLSTM) RNNs are optimized to prevent RNNs from

developing long-term dependence. A CLSTM is made

up of a memory cell and three major gates that regulate

data input, output and accumulation. When it comes to

time series, natural language processing, voice

recognition and other tasks that include sequential

patterns, CLSTMs shine. Based on the way data moves

through the network, a mathematical model of CLSTM

can be stated as follows in Eq.s (3-7):

 𝑒𝑠 = 𝜎(𝑋𝑒[𝑔𝑡−1,𝑊𝑠] + 𝐶𝑒) (3)

 𝐽𝑠 = 𝜎(𝑋𝑗[𝑔𝑠−1,𝑤𝑠] + 𝑐𝑒) (4)

 𝑑̂𝑠 = 𝑡𝑎𝑛𝑔(𝑋𝑑[𝑔𝑠−1,𝑤𝑠] + 𝑐𝑏) (5)

 𝐷𝑠 = 𝑒𝑠°𝑑𝑠−1 + 𝑗𝑠°𝑑̂𝑠 (6)

 ℎ𝑡 = 𝑜𝑡°𝑡𝑎𝑛𝑔(𝑐𝑡) (7)

The product is the location where the sigmoid

nonlinearity function and (°) intersect. More robust

networks can be created by stacking and temporally

linking the fundamental CLSTM unit. These networks

have been put to use to address a variety of time-series

challenges a shown in Figure 1.

Figure 1. Architecture of LSTM

3.3.2 Hybrid Elephant Herding Optimization

(HEHO)

An innovative strategy for the protection and

management of elephant populations is HEHO. This

ground-breaking approach uses data analytics, drones

and GPS monitoring to combine old-school herding

methods with modern technologies. Improved elephant

herding efficiency, less human-wildlife conflict and

more sustainable cohabitation are the goals of HEHO's

hybrid approach. The welfare of elephants is the priority

of this innovative project, which aims to balance the

impact of elephants on local ecosystems and

communities. HEHO exemplifies the power of

combining traditional knowledge with contemporary

approaches to tackle the intricate problems of animal

preservation.

3.3.2.1 Operator for updating clans

As it is typical among elephants, a matriarch leads each

group. Accordingly, supreme 𝑑𝑗 changes the way every

elephant stands 𝑑𝑗. To find the clan, use Eq.s (8-10) 𝑑𝑗

elephant 𝑖.

𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 = 𝑦𝑑𝑗,𝑖 + 𝑏 × (𝑤𝑏𝑒𝑠𝑡,𝑑𝑗 − 𝑦𝑑𝑗,𝑖) × 𝑞 (8)

Where, 𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 and 𝑦𝑑𝑗,𝑖 are the elephant's current and

previous positions 𝑖 in clan 𝑑𝑗, respectively. 𝑤𝑏𝑒𝑠𝑡,𝑑𝑗 Is

matriarch, 𝑑𝑗 symbolizes the most superior elephant in

the family. A ∈ [0, 1] denotes a factor of scale, r ∈ [0,

1]. Eq. (9) can be used for each tribe to choose the best

elephant.

𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 = 𝛽 × 𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗 (9)

The impact of the 𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗 on the new individual

𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 is determined by 𝛽, a factor that falls in the

interval [0, 1]. 𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗represents the central member

of clan 𝑑𝑗. Eq. (3) can be used to compute it in the

dth dimension.

𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗 =
1

𝑚𝑤𝑗
× ∑ 𝑤𝑑𝑗,𝑖,𝑐

𝑚𝑑𝑘
𝑖=1 (10)

Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 363-372, doi: 10.24874/PES.SI.24.02.019

367

Where, 𝑚𝑤𝑗 is the number of elephants in clan ci and 1

≤ d ≤ D. Eq. (3) can be used to update 𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗, which

is the centre of clan 𝑑𝑗 and 𝑤𝑑𝑗,𝑖,𝑐 which one is the

elephant's dthdimension 𝑤𝑑𝑗,𝑖,𝑐.

3.3.2.2 The separation of Operator

The process by which a male elephant departs from

his family can be represented as a separation operator

for use in optimization algorithms. According to Eq.

(11), the elephant with the lowest fitness in each

generation is responsible for implementing the

separation operator.

𝑤𝑤𝑜𝑟𝑠𝑡,𝑑𝑗 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛 + 1) × 𝑟𝑎𝑛𝑑 (11)

Where 𝑤𝑚𝑖𝑛 denotes the individual's lower limit and

𝑤𝑚𝑎𝑥 represents the individual's upper bound. The

weakest member of clan ci is indicated by𝑤𝑤𝑜𝑟𝑠𝑡,𝑑𝑗.

The random variable Rand [0, 1] ranges from 0 to 1.

The mainframe of EHO is summarized as described

by the operator responsible for clan updates and the

operator accountable for separating. The following

flow diagram shows this. The maximum generation is

MaxGen. Here are the fundamental stages of the

EHO, as shown in Algorithm 1. Figure 2 displays the

matching flow diagram.

Algorithm 1: Hybrid Elephant herding optimization

(HEHO)

(1) Start

(2) Beginning. Define the starting point for

iterations 𝐻 = 1; to begin with the group 𝑂 without

prior planning; determine the highest possible output

𝑀𝑎𝑥𝐺𝑒𝑛.

(3) While failure to meet the stopping

requirement do

(4) Arrange the population in descending order of

fitness.

(5) For every group 𝑑𝑗do

(6) For elephant 𝑖 in the clan 𝑑𝑗do

(7) Produce 𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 =and inform 𝑦𝑑𝑗,𝑖by Eq. (8).

(8) If 𝑦𝑑𝑗,𝑖 = 𝑤𝑏𝑒𝑠𝑡,𝑑𝑗 then

(9) Produce 𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖and inform 𝑦𝑑𝑗,𝑖by Eq. (9).

(10) Finish if

(11) Finish for

(12) Finish for

(13) For all clans 𝑑𝑗 do

(14) Take over from the worst person 𝑑𝑗 by Eq.

(11).

(15) Finish for

(16) Assess every elephant based on its location.

(17) 𝑆 = 𝑆 + 1.

(18) finish while

(19) Finish.

Figure 2. The EHO algorithm's flowchart

3.3.2.3 Examination of the Complexity of

Algorithms

The algorithm's computational complexity is examined

according to the steps of the EHO algorithm. Assume

that MO is the population size and C is the dimension.

Sorting the population in step (4) according to

individuals' fitness is complicated in time of 𝑃(𝑀𝑂), as

it is evident. Given the intricacy of time 𝑃(𝑀𝑂 × 𝐶),

run the clan-updating user that can access all clans 𝑑𝑗 in

steps (5)–(12). Perform the separation operator for each

clan 𝑑𝑗 in steps (13)–(15) with a time complexity

of 𝑃(𝑀𝑂). Evaluate eachelephant based on its location

in stage (16), the difficulty of which is time-related

to 𝑃(𝑀𝑂). 𝑃(𝑆 × 𝑀𝑂 × 𝐶)Is theoveralltime

complexity required to accomplish this task in elephant

herding optimization. After removing the low-order

components, the EHO algorithm's overall time

complexity is 𝑃(𝑆 × 𝑀𝑂 × 𝐶), which is connected to

S, MO and C, according to the findings given above.

In this study, Intel® Core i9 CPUs running Windows 11

and a laptop with 8.00 GB of RAM are employed in

conjunction with the Python platform to access data.

The relationship between the fault-proneness of

software modules and the static code metrics, most

notably McCabe's complexity metrics, is investigated

and presented in this part. The section examines and

explains the link. For the purpose of carrying out the

analysis, a confusion matrix, area under the curve

(AUC) and accuracy requirements are used. This section

discusses the findings of the research as well as the

results of empirical assessments.

Yadav et al., Computerized software quality evaluation with novel artificial intelligence approach

 368

4. RESULT

4.1 Accuracy Measure

Classifier efficiency is measured using the Accuracy

metric. Table 1 summarizes the results of 30 different

classifiers in terms of the Accuracy metric.

Specifically, the HEHO-CLSTM model demonstrated

its efficacy in the particular environment with

impressive accuracy percentages of 90.97%, 91.35%,

90.60% and 95.30% for the dataset of CM1, KC1,

KC3 and PC2, respectively. As seen in Figure 3, the

Accuracy metric was assessed using the graphical

depiction.

Table 1. Comparison of Accuracy measure

Methods
Accuracy (%)

CM1 KC1 KC3 PC2

ANN 0.8996 0.8482 0.8371 0.9296

NB 0.8735 0.8307 0.8409 0.9017

DT 0.8494 0.8373 0.8065 0.9089

KNN 0.8614 0.275 0.8084 0.7682

HEHO-CLSTM

(Proposed)
0.9097 0.9135 0.906 0.953

Figure 3. Outcomes of Accuracy measure

4.2 Buggy instance

When comparing the number of modules that were

recognized as having bugs to the number of modules

that were correctly identified as clean, it is essential

to conduct the comparison using a logical manner.

Incorrectly identifying a clean instance as a problem

is linked with a number of costs, while the costs

associated with missing a bug instance are far higher.

Table 2 and Figure 4 displays the results of an

analysis of the proportion of buggy modules that

were accurately predicted in light of this perspective

on avoiding the omission of "risky" modules. Equal

to this percentage is the predictor's sensitivity. In

particular, for CM1, KC1, KC3 and PC2, the HEHO-

CLSTM model showed buggy

Table 2. Comparison of Buggy instance

Methods
Buggy Instance (%)

CM1 KC1 KC3 PC2

DT 20.4 27.9 47.66 15.58

KNN 24.48 64.41 48.59 41.55

ANN 8.16 13.19 29.9 2.59

NB 22.44 26.68 43.05 18.18

HEHO-CLSTM

[Proposed]
30.15 67.15 50.29 45.09

Figure 4. Outcomes Buggy instance

4.3 Area under the curve (AUC) Measure

The area under the ROC curve is the next

performance metric. The proximity of the AUC value

to '1' was measured. If the AUC is 1, then the

classifier is accurate in its predictions. The AUC for

each of the 30 classifiers is shown in Table 3. The

ANN classifier achieves a maximum AUC of 0.8315

developed with the KC2 dataset. Figure 5 displays

the AUC for classifiers arranged by dataset; The

AUC percentages of 0.7598, 0.8095, 0.8560 and

0.7598 for CM1, KC1, KC3 and PC2, respectively,

indicate the efficacy of the HEHO-CLSTM model in

differentiating between positive and negative

occurrences in the specified classification tasks.

Table 3. Comparison of AUC Measure

Methods
AUC

CM1 KC1 KC3 PC2

DT 0.5289 0.6828 0.7104 0.5863

KNN 0.5868 0.5741 0.6887 0.605

ANN 0.7286 0.7878 0.8315 0.7187

NB 0.6592 0.7442 0.7816 0.6053

HEHO-CLSTM

[Proposed]
0.7598 0.8095 0.856 0.7598

Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 363-372, doi: 10.24874/PES.SI.24.02.019

369

Figure 5. Outcomes of AUC Measure

5. DISCUSSION

According to (Goyal S & Bhatia P.K (2020)), there are a

few restrictions that are related to ANN. They function

in a "black box," which means that the intricate links

that are found inside the network are impossible to

understand or explain. This is one of the most

significant downsides of these systems. Because of this

lack of transparency, ANNs cannot be as trustworthy in

critical applications where it is essential to have a solid

grasp of the decision-making process, such as in the

healthcare or financial sectors. An excellent example of

such an application is here. In addition, ANN could

need a significant amount of labeled data to be trained

efficiently. This would make them computationally

expensive and unsuitable for tasks that entail a limited

dataset size. Another cause for concern is the danger of

over fitting, which can occur when the model performs

well on the data that it was trained on but poorly on data

that it has never seen before. This demonstrates the need

to find regularization strategies and do comprehensive

model validation. The NB (Goyal S & Bhatia P.K

(2020)) approach has a number of drawbacks, one of

which is that it assumes the independence of the

characteristics that are evaluated, which cannot be the

case in some instances that occur in real life. The

assumption that the qualities are independent of one

another is made by the model, which is based on the

class label. This can result in performance that could be

better when dealing with data that indicates correlation.

When presented with intricate relationships in the data

or when attributes have significant interactions with one

another, NB has a propensity to provide poor results.

This is because of the previous point. This simplistic

assumption can limit the model's ability to capture

complex interactions, which would result in the model's

less effective performance in some challenging tasks.

Despite the fact that the assumption is straightforward

and can be calculated with relative ease, this is the

situation that unfolds. Over fitting is an issue that can

occur when utilizing DT (Goyal S & Bhatia P.K

(2020)), which is troublesome when dealing with big

datasets. This problem can appear while working with

trees. It is difficult for them to generalize to new

circumstances when they become too complicated and

unique to the training data. Additionally, trees are

subject to noise in the data, which can result in several

trees having virtually the same prediction value. This

can be a difficult situation to deal with. In addition,

there are instances in which alternative machine

learning algorithms can perform better than them in

terms of the accuracy of their predictions and the

durability of their models. Furthermore, these

algorithms can need help collecting complex

correlations in the data. KNN (Goyal S & Bhatia P.K

(2020)) has a number of drawbacks, one of which is that

it is sensitive to the distance metric that is used, as well

as the curse of dimensionality. The relevance of the

distance between data points is diminished as the

number of characteristics increases, which results in a

dramatic decline in performance. With large datasets,

KNN could be more efficient since it compares each

query instance to the training instances and calculates

the distance between them. This is true when dealing

with large datasets. In light of this, it is possible that

KNN is not suited for large-scale applications that are

used in the real world because of its prohibitive

processing needs. In order to solve this issue, they made

use of the Intelligent HOI-CLSTM that is incorporated

into LSTM. This tool improves the performance of the

model by increasing its ability to adapt to new and

diverse inputs, which results in an improved accuracy,

quicker convergence and overall better outcomes.

6. CONCLUSION

In this study, there is a significant amount of potential

for development in the field of automated software

quality evaluation that makes use of a breakthrough

artificial intelligence approach. Artificial intelligence

(AI) approaches that are innovative increase the

accuracy, efficiency and flexibility of software quality

evaluation. Using this strategy, evaluation is

strengthened and automated, which results in improved

software development operations. Interpretability and

data bases are two issues that need to be addressed to

ensure that advanced AI algorithms for software quality

assessment are used in a manner that is reliable and

ethical. To evaluate the effectiveness of software

prediction algorithms, this research compares four

distinct classifiers to five software defect datasets taken

from the repository. The datasets were used to analyze

software defects. In order to provide an empirical

assessment of machine learning techniques the objective

of this project is to provide such an assessment for the

purpose of software quality prediction. Through the

course of this investigation, they formulate the task of

software quality prediction as a two-class classification

issue, which can be carried out with the assistance of

machine learning techniques. Static code metrics are

used in the process of developing prediction models,

Yadav et al., Computerized software quality evaluation with novel artificial intelligence approach

 370

which are assessed using the AUC and accuracy

metrics. The following are the outcomes of the

MATLAB experiments and discourse: A total of thirty

quality predictors were developed, trained and assessed

by using five distinct machine learning algorithms on

five datasets taken from the repository, one of which

was the data pertaining to defect prediction. It has been

discovered that static code metrics are, in fact, an

adequate indication of the quality of software that will

be developed in the future. The effectiveness of the

created classifiers is evaluated and a comparison is

carried out with the aid of the metrics along with charts

that are required. AUC percentages of 0.7598, 0.8095,

0.8560 and 0.7598 for CM1, KC1, KC3 as well as PC2

indicate the model's exceptional discriminative ability.

The HEHO-CLSTM model showed impressive

accuracy, successfully identifying software problems

with percentages of 30.15%, 67.15%, 50.29% and

45.09%. When it comes to future work on automated

software quality evaluation utilizing a one-of-a-kind AI

approach, one of the most important goals should be to

enhance the adaptability of the AI models so that they

can adjust to changing software environments and

industry standards. Increasing the flexibility and

accuracy of the evaluation system can be accomplished

by including feedback loops from end-users and

mechanisms for continuous learning. Furthermore, to

conduct assessments that are efficient and focused, it

would be beneficial to study the potential of automating

the process of identifying and ranking the importance of

software quality criteria according to the specific

requirements of a particular project.

References:

Aziz, S. R., Khan, T., &Nadeem, A. (2019). Experimental validation of inheritance metrics’ impact on software fault

prediction. IEEE Access, 7, 85262-85275. doi: https://doi.org/10.1109/ACCESS.2019.2924040.

Deng, J., Lu, L., &Qiu, S. (2020). Software defect prediction via LSTM. IET software, 14(4), 443- 450.

https://doi.org/10.1049/iet-sen.2019.0149.

Farid, A. B., Fathy, E. M., Eldin, A. S., &Abd-Elmegid, L. A. (2021). Software defect prediction using hybrid model

(CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory Bi-LSTM).

PeerJComputer Science, 7, e739. https://doi.org/10.7717/peerj-cs.739.

Goyal, S., & Bhatia, P. K. (2020). Comparison of machine learning techniques for software quality prediction.

International Journal of Knowledge and Systems Science (IJKSS), 11(2), 20-40.

https://doi.org/10.4018/IJKSS.2020040102.

Herbold, S. (2019). On the costs and profit of software defect prediction. IEEE Transactions on Software

Engineering, 47(11), 2617-2631. https://doi.org/10.1109/TSE.2019.2957794.

Khuat, T. T., & Le, M. H. (2020). Evaluation of sampling-based ensembles of classifiers on imbalanced data for

software defect prediction problems. SN Computer Science, 1(2), 108. https://doi.org/10.1109/ICPC.2019.00043.

Kurniawan, I., Hayder, G., & Mustafa, H. M. (2021). Predicting water quality parameters in a complex riversystem.

Journal of Ecological Engineering, 22(1). https://doi.org/10.12911/22998993/129579.

Li, N., Shepperd, M., &Guo, Y. (2020). A systematic review of unsupervised learning techniques for software defect

prediction. Information and Software Technology, 122, 106287. https://doi.org/10.1016/j.infsof.2020.106287.

Massoudi, M., Jain, N. K., & Bansal, P. (2021, February). Software defect prediction using dimensionality reduction

and deep learning. In 2021 Third International Conference on Intelligent Communication Technologies and Virtual

Mobile Networks (ICICV) (pp. 884-893). IEEE. https://doi.org/10.1109/ICICV50876.2021.9388622.

Mhawish, M. Y., & Gupta, M. (2020). Predicting code smells and analysis of predictions: Using machine learning

techniques and software metrics. Journal of Computer Science and Technology, 35, 1428-1445.

https://doi.org/10.1007/s11390-020-0323-7.

Pascarella, L., Palomba, F., &Bacchelli, A. (2019). Fine-grained just-in-time defect prediction. Journal of Systems

and Software, 150, 22-36. https://doi.org/10.1016/j.jss.2018.12.001.

Prabha, C. L., &Shivakumar, N. (2020, June). Software defect prediction using machine learning techniques. In 2020

4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184) (pp. 728-733). IEEE.

https://doi.org/10.1109/ICOEI48184.2020.9142909.

Radu, L. D. (2019, July). Effort Prediction in Agile Software Development with Bayesian Networks. In ICSOFT

(pp.238-245) https://doi.org/.0000-0002-1463-8369.

Rathore, S. S., & Kumar, S. (2019). A study on software fault prediction techniques. Artificial Intelligence

Review, 51, 255-327. https://doi.org/10.1007/s10462-017-9563-5.

Rizwan, M., Nadeem, A., &Sindhu, M. A. (2019). Analyses of classifier’s performance measures used in software

fault prediction studies. IEEE Access, 7, 82764-82775. https://doi.org/10.1109/ACCESS.2019.2923821.

Thota, M. K., Shajin, F. H., & Rajesh, P. (2020). Survey on software defect prediction techniques. International

Journal of Applied Science and Engineering, 17(4), 331-344. 10.6703/IJASE.202012_17(4).331.

https://doi.org/10.1109/ACCESS.2019.2924040
https://doi.org/10.1049/iet-sen.2019.0149
https://doi.org/10.7717/peerj-cs.739
https://doi.org/10.7717/peerj-cs.739
https://doi.org/10.7717/peerj-cs.739
https://doi.org/10.1109/TSE.2019.2957794
https://doi.org/10.1109/ICPC.2019.00043
https://doi.org/10.7717/peerj-cs.739
https://doi.org/10.1016/j.infsof.2020.106287
https://doi.org/10.1109/ICICV50876.2021.9388622
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1016/j.jss.2018.12.001
https://doi.org/10.1109/ICOEI48184.2020.9142909
https://orcid.org/0000-0002-1463-8369
https://doi.org/10.1007/s10462-017-9563-5
file:///C:/Users/HP/Downloads/10.1109/ACCESS.2019.2923821
file:///C:/Users/HP/Downloads/10.1109/ACCESS.2019.2923821
https://doi.org/10.6703/IJASE.202012_17(4).331

Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 363-372, doi: 10.24874/PES.SI.24.02.019

371

Wu, X., Zheng, W., Chen, X., Zhao, Y., Yu, T., & Mu, D. (2021). Improving high-impact bug report prediction with

combination of interactive machine learning and active learning. Information and Software Technology, 133,

106530. https://doi.org/10.1016/j.infsof.2021.106530.

Wu, X., Zheng, W., Xia, X., & Lo, D. (2021). Data quality matters: A case study on data label correctness for

security bug report prediction. IEEE Transactions on Software Engineering, 48(7), 2541-2556.

https://doi.org/10.1109/TSE.2021.3063727.

Zhu, M., Sun, Z., Chen, T., & Lee, C. (2021). Low cost exoskeleton manipulator using bidirectional triboelectric

Sensors enhanced multiple degree of freedom sensory system. Nature communications, 12(1), 2692.

https://doi.org/10.1038/s41467-021-23020-3.

Dhyan Chandra Yadav
Maharishi University of Information

Technology, Uttar Pradesh, India

dc9532105114@gmail.com

ORCID 0000-0003-0084-0360

Yaduvir Singh
Noida Institute of Engineering & Technology,

Greater Noida, Uttar Pradesh, India

yaduyash@niet.co.in

ORCID 0000-0002-2552-4797

Arvind Kumar Pandey
Arka Jain University, Jamshedpur,

Jharkhand, India,

dr.arvind@arkajainuniversity.ac.in

ORCID 0000-0001-5294-0190

A. Kannagi

Jain (Deemed to be University),

Bangalore, Karnataka, India

a.kannagi@jainuniversity.ac.in

ORCID 0000-0003-3810-7500

https://doi.org/10.1016/j.infsof.2021.106530
https://doi.org/10.1109/TSE.2021.3063727
https://doi.org/10.1038/s41467-021-23020-3
mailto:dc9532105114@gmail.com
mailto:yaduyash@niet.co.in
mailto:dr.arvind@arkajainuniversity.ac.in
mailto:a.kannagi@jainuniversity.ac.in

Yadav et al., Computerized software quality evaluation with novel artificial intelligence approach

 372

