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A B S T R A C T 

Software quality assurance has grown in importance in the fast-paced world 

of software development. One of trickiest parts of creating and maintaining 

software is predicting how well it will perform. The term "computer 

evaluation" refers to use of advanced AI techniques in software quality 

assurance, replacing human evaluations and paving the way for a new era in 

software evaluation. We proposed Hybrid Elephant herding optimized 

Conditional Long short-term memory (HEHO-CLSTM) to estimate Software 

Quality Prediction. Software quality prediction and assurance has grown in 

importance in ever-changing world of software development. Software quality 

prediction encompasses a wide range of activities aimed at improving the 

quality of software systems via the use of data-driven approaches for 

prediction, evaluation and enhancement. We have collected Software Defects 

data and we feature extracted the attributes using linear discriminant 

Analysis (LDA). The suggested system improves the accuracy, AUC and 

Buggy instance compared with the current methods. 

© 2024 Published by Faculty of Engineeringg 

 

 

 

 

1. INTRODUCTION  
 

Software quality assurance (SQA) is an approach for 

overseeing and controlling the production of software to 

ensure that it meets the specifications while keeping costs 

down. The use of software testing, software failure 

prediction and formal code inspections are the possibilities. 

Software fault forecasting is an effort to maximize the 

efficiency with which limited SQA resources are used by 

predicting the problem-proneness of program components 

(Rathore and Kumar (2019)). Finding and resolving bugs is 

one of the most time-consuming and expensive aspects of 

developing embedded software. In automotive embedded 

systems quality monitoring along with fulfillment presents 

significant challenges due to infrastructure complexity, 

scale, cost and time constraints. It is essential to maintain 

the highest standards of quality and dependability (Thota et 

al., (2020)). Several methods for predicting defects have 

been developed during the past couple of decades in an 

attempt to improve software quality. Machine learning is 

used more often. It is possible to classify these strategies as 

either supervised (requiring labels, whether they are right 

or not) or unsupervised (not requiring labels). Most models 

of prediction need some human intervention. Software 
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defect prediction (SDP) models need defect categorization 

labels for training, but these might be hard in reality. There 

has been a lot of interest in Unsupervised Defect Prediction 

(UnSDP) models recently (Li et al., (2020)). The term 

electromagnetic interference (EMI) is used to describe the 

unintentional transfer of energy between two circuits or 

systems, whether that energy is radiated through space or 

conducted through grounding, power or signal conductor. 

It's not a new problem for electronics to have EMI 

interference. When (analog) electronics were first 

developed, creating side effects was a significant worry 

(Herbold (2019)).  

 

The quality and reliability of software are under 

increasing strain as processing power rises with the 

amount and complexity of software. Companies must 

invest time and money into hiring quality assurance staff 

to inspect their software for bugs (Zhu et al., (2021)). But 

to uncover as many defects as possible, software testing 

takes a lot of time to complete different test cases, 

making it unfeasible to run the test for the whole project 

when resources are limited and deadlines are short. SDP 

has been proposed to speed up the discovery of faulty 

code by the assurance team while reducing the time and 

money spent on software testing (Deng et al., (2020)). 

Studying mining software repositories (MSR) mining has 

grown in popularity as a method for finding valuable data 

on software systems and projects. Central to model-

driven software development is the construction of 

prediction models, which in turn requires massive 

amounts of labeled data. While studies on the 

repercussions of inaccurate labels are lacking, it is 

nevertheless essential to consider marking accuracy while 

creating a predictive model. The present research 

investigates the consequences of mislabeled cases for 

prediction, which is necessary since locating SBRs in a 

giant bug library is critical for reducing computer product 

safety risks (Wu et al., (2021)).  

 

The last decade has seen a shift in emphasis towards 

software-based systems, with the quality of the software 

itself seen as the most critical factor in the success of the 

system. Due to the high volume of produced application 

software, poor-quality software needs to be made for 

public and private usage. During the development phase, 

businesses use defect prediction design models to aid in 

fault prediction, effort estimation, software reliability 

testing, hazard analysis and other similar tasks (Prabha  and 

Shivakumar (2020)). Developers must adhere to functional 

and non-functional quality standards in software 

development. Poor software quality is caused by the 

absence of non-functional quality requirements, which in 

turn increases the complexity and effort required for 

maintenance and evolution owing to the programmed 

design's inherent weakness. The phrase code smells is used 

to characterize poor software implementation architecture 

(Mhawish and Gupta (2020)). The objective of the research 

team behind this project set out to discover and use a new 

AI-based computerized software quality assessment 

methodology. Through the implementation of novel 

approaches, with an emphasis on cutting-edge AI 

techniques, this project intends to improve software quality 

assurance. The aim of this study is to determine how well 

the proposed technique, Hybrid Elephant herding 

optimized Conditional Long short-term memory (HEHO-

CLSTM), can accurately predict software quality. A more 

effective and trustworthy software quality assurance 

procedure is the end aim and current approaches are a 

starting point. 

 

1.1 Contributions of the study 

 

• This research solves the problems of software 

performance prediction, which is a major step 

forward for software quality assurance. A 

groundbreaking development in software quality 

prediction, Hybrid Elephant herding optimized 

Conditional Long short-term memory (HEHO-

CLSTM) employs state-of-the-art AI techniques. 

• Accuracy, area under the curve (AUC) and the 

detection of instances that include bugs are 

improved by the use of data-driven methodologies, 

notably linear discriminant analysis (LDA). 

• This forward-thinking work highlights the growing 

relevance of software quality prediction in the ever-

changing environment of software development. It 

highlights the need of using modern approaches to 

guarantee the dependability and performance of 

software systems. 

 

In the section 2 of the paper, we combine a thorough 

literature review for background and insight. Section 3 

provides a deeper dive into the approach. In Section 4, 

we present an in-depth evaluation and of the results. 

Section 5 discussions and in the section 6, the relevance 

of the conclusion is discussed in depth. 

 

2. RELATED WORKS 
 

Massoudi et al., (2021) analysed that they use five open-

source datasets that can be found in the Promise Data 

Repository. The prediction of software defects was an 

essential component in ensuring the quality of 

programming. Methods of deep learning can be used for 

the purposes above. To carry out this comparison 

analysis, they make use of five open-source datasets that 

can be found in the Promise Data Repository. The 

prediction of software defects was an essential 

component in ensuring the quality of programming. 

Methods based on deep learning can be used for the 

reasons listed above. Wu et al., (2021) described the high-

impact bug report (HBR) prediction, which has seen a 

number of machine learning-based techniques put out in 

recent years. Supervised computer learning was the basis 

for the majority of them. It can be challenging to get 

sufficient quantities of labeled data, which were 

fundamental to the actual application of machine 

learning. Issues discovered during software development 

and maintenance was documented in bug reports.  



Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 363-372, doi: 10.24874/PES.SI.24.02.019 
 

365 

An HBR explains a problem that, if it arises after 

deployment, might result in significant harm. To guarantee 

the quality of the software, it was essential to locate HBRs 

in the bug repository as soon as was practical. Radu (2019) 

evaluated a number of scholars and practitioners who have 

developed different estimating strategies in recent years. 

Since there were a lot of unknown factors in the software 

development process, some projects continue to fail 

because the budget and timeline were not adequately 

forecasted. Since many businesses had embraced agile 

approaches, the success rate of software projects has 

grown. The primary cause of the failure has switched from 

the creation and comprehension of the criteria to erroneous 

effort estimate as a result of their adaptability and ongoing 

customer contact. 

 

Farid et al., (2021) discussed the significant efforts 

made by the software industry to raise the quality of 

software inside businesses. Developers and white box 

testers save time and effort by identifying flaws sooner 

with the aid of proactive software defect prediction. 

Code complexity, lines of code and other conventional 

source code characteristics were the focus of traditional 

software fault prediction models. Khuat and Le (2020) 

assessed the maintainability of source code from three 

distinct projects in collaboration with qualified quality 

analysts. Next, using code metrics, they trained machine 

learning algorithms to forecast how programmed classes 

would be evaluated for human maintainability. Tools for 

static code analysis were the standard for controlling 

and monitoring the quality of a software system. These 

tools provide a multitude of metrics, which the 

developers must evaluate to get insight into the true 

quality of the product. Pascarella et al., (2019) 

determined if each code patch that a developer submits 

has a software flaw or not. The technique has the benefit 

of being quick and simple to monitor. The worst 

problem was that the data set category imbalance has an 

impact on Just-in-Time software's forecasting reliability. 

Aziz et al., (2019) examined the extent to which 

inheritance metrics aid in the prediction of software 

fault proneness. Software bugs can range from minor 

irritations to catastrophic errors. Software fault 

prediction (SFP) research from recent times suggests 

that to facilitate testing, defects should be predicted 

before deployment. Object-oriented programming was 

more intricate than procedural languages, which include 

many dimensions and inheritance as a critical 

component. Rizwan et al., (2019) examined the 

performance metrics of 14 commonly used, non-graphic 

classifiers utilized in software failure prediction (SFP) 

investigations. Evaluating the software's quality was a 

crucial and challenging task. SFP models have been 

employed for this purpose. But deciding which model to 

use and which among many models was the best 

depends on the performance metrics. Kurniawan et al., 

(2021) discussed forecasting water quality parameters, 

including dissolved oxygen (DO), in the watershed 

system. For effective management of water resources, 

accurate water quality prediction was essential. The data 

on water quality parameters was non-stationary, 

unpredictable and nonlinear; to get over these issues, a 

hybrid model that employed synchrosqueezed wavelet 

transform (SWT) was used to denoise the original data. 

 

3. METHODOLOGY 

 
By using state-of-the-art AI techniques, An Innovative 

AI-powered system for Evaluating Software Quality 

completely revamps conventional quality assessment 

methods. To evaluate software quality metrics in a more 

thorough and precise manner, this novel method makes 

use of state-of-the-art algorithms and machine learning 

models. This approach improves software dependability 

by using AI not only to find and fix bugs but also to 

anticipate as well as to prevent future problems. The 

incorporation of new methods guarantees flexibility to 

changing software environments, which is a giant step 

forward in the quest for effective and efficient quality 

assurance in the domain of computerized systems.  

 

3.1 Dataset  

 
A feasible, research-based repository calledEvidence-

Based Software Portfolio Management (EBSPM) enables 

software organizations in actively enhancing their software 

delivery portfolio. To encourage innovation in software 

development inside an organization, the EBSPM attempts 

to benchmark, evaluate, and appraise related applications 

based on of costs, duration, features, and defect counts. 

 

3.2 Feature extraction using linear discriminate 

Analysis (LDA)  
 

After the data was acquired using LDA, the data was 

retrieved from it. Fisher  established LDA as one of the 

first methods of discriminate analysis. Each class's 

probability distribution is assumed to be Gaussian 

(standard) in this procedure. In addition to the normalcy 

hypothesis, define a priori probabilities by the 

LDA. 𝜋𝑖every single J class. The learning set can calculate 

this probability, for instance, as,𝑀𝑖/𝑀For all types set is 

equal. The second strategy is used in this study. The Bayes 

rule allocates each sample to the group with the most 

excellent posterior probability. The class 𝑗 that generates 

the most negligible value of each component is indicated 

and 𝐶𝑖 is based on the assumptions above in Eq. (1). 

 

𝐶𝐽 = (𝑋𝑖 − 𝜇𝑗)
𝑡

∑ (𝑥𝑖 − 𝜇𝑗) + 𝑙𝑜𝑔|Σ|−1 − 2𝑙𝑜𝑔(𝜋𝑖) (1) 

 

Where 𝜇𝑗𝑆 represents the class means, while the group 

refers to the variance-covariance matrix shared by all 

types. Mahalanobis distances are subjected to this 

requirement if the prior probability for each class is the 

same. The mean and covariance matrices must be 

estimated using the data. The group typically means 𝑥𝑗 

is employed to establish the standards. The expected 

covariance matrix is calculated using the following 

value in Eq. (2): 
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    𝑇 = ∑
(𝑁𝑗−1)𝑇𝑖

(𝑁−𝐽)

𝑗
𝑗=1    (2) 

 

Where 𝑇𝑖  is the class𝑖 empirical variance-covariance 

matrix, the critical drawback of LDA's is that it needs a 

covariance matrix with good conditioning. This 

indicates that the approach is inapplicable, not when 

there are more than a few variables or when the 

variables are strongly linked.  

 

3.3 Computerized Software using Hybrid 

Elephant herding optimized Conditional 

Long short-term memory (HEHO-CLSTM) 

 
An advanced algorithm for data analysis and prediction, the 

HEHO-CLSTM is novel and complex. This state-of-the-art 

model integrates the best features of conditional long short-

term memory networks with those of hybrid elephant 

herding methods. With these components, HEHO-CLSTM 

hopes to improve forecast accuracy and flexibility on 

various datasets. The programme is able to traverse 

complicated data landscapes because of the one-of-a-kind 

combination of modern neural network architecture with 

the principles of elephant herding. For sectors that need 

accurate forecasts, HEHO-CLSTM is an excellent option 

since it is at the cutting edge of predictive analytics. 

 

3.3.1 Conditional Long short-term memory 

(CLSTM) 

 
The suggested architecture relies on CLSTMs to 

translate video frame descriptions into  textual 

narration. Conditional Long Short-Term Memory 

(CLSTM) RNNs are optimized to prevent RNNs from 

developing long-term dependence. A CLSTM is made 

up of a memory cell and three major gates that regulate 

data input, output and accumulation. When it comes to 

time series, natural language processing, voice 

recognition and other tasks that include sequential 

patterns, CLSTMs shine. Based on the way data moves 

through the network, a mathematical model of CLSTM 

can be stated as follows in Eq.s (3-7): 

 

   𝑒𝑠 = 𝜎(𝑋𝑒[𝑔𝑡−1,𝑊𝑠] + 𝐶𝑒)  (3) 

 

   𝐽𝑠 = 𝜎(𝑋𝑗[𝑔𝑠−1,𝑤𝑠] + 𝑐𝑒)  (4) 

 

  𝑑̂𝑠 = 𝑡𝑎𝑛𝑔(𝑋𝑑[𝑔𝑠−1,𝑤𝑠] + 𝑐𝑏)  (5) 

 

   𝐷𝑠 = 𝑒𝑠°𝑑𝑠−1 + 𝑗𝑠°𝑑̂𝑠   (6) 

 

   ℎ𝑡 = 𝑜𝑡°𝑡𝑎𝑛𝑔(𝑐𝑡)   (7) 

 

The product is the location where the sigmoid 

nonlinearity function and (°) intersect. More robust 

networks can be created by stacking and temporally 

linking the fundamental CLSTM unit. These networks 

have been put to use to address a variety of time-series 

challenges a shown in Figure 1. 

 
Figure 1. Architecture of LSTM 

 

3.3.2 Hybrid Elephant Herding Optimization 

(HEHO) 
 

An innovative strategy for the protection and 

management of elephant populations is HEHO. This 

ground-breaking approach uses data analytics, drones 

and GPS monitoring to combine old-school herding 

methods with modern technologies. Improved elephant 

herding efficiency, less human-wildlife conflict and 

more sustainable cohabitation are the goals of HEHO's 

hybrid approach. The welfare of elephants is the priority 

of this innovative project, which aims to balance the 

impact of elephants on local ecosystems and 

communities. HEHO exemplifies the power of 

combining traditional knowledge with contemporary 

approaches to tackle the intricate problems of animal 

preservation. 

3.3.2.1 Operator for updating clans 
 

As it is typical among elephants, a matriarch leads each 

group. Accordingly, supreme 𝑑𝑗 changes the way every 

elephant stands 𝑑𝑗. To find the clan, use Eq.s (8-10) 𝑑𝑗 

elephant 𝑖. 
 

𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 = 𝑦𝑑𝑗,𝑖 + 𝑏 × (𝑤𝑏𝑒𝑠𝑡,𝑑𝑗 − 𝑦𝑑𝑗,𝑖) × 𝑞     (8) 

 

Where, 𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 and 𝑦𝑑𝑗,𝑖  are the elephant's current and 

previous positions 𝑖 in clan 𝑑𝑗, respectively. 𝑤𝑏𝑒𝑠𝑡,𝑑𝑗 Is 

matriarch, 𝑑𝑗 symbolizes the most superior elephant in 

the family. A ∈ [0, 1] denotes a factor of scale, r ∈ [0, 

1]. Eq. (9) can be used for each tribe to choose the best 

elephant. 

 

𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 = 𝛽 × 𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗  (9) 

 

The impact of the 𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗 on the new individual 

𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 is determined by 𝛽, a factor that falls in the 

interval [0, 1]. 𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗represents the central member 

of clan 𝑑𝑗. Eq. (3) can be used to compute it in the 

dth dimension. 

 

𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗 =
1

𝑚𝑤𝑗
× ∑ 𝑤𝑑𝑗,𝑖,𝑐

𝑚𝑑𝑘
𝑖=1   (10) 
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Where, 𝑚𝑤𝑗 is the number of elephants in clan ci and 1 

≤ d ≤ D. Eq. (3) can be used to update 𝑤𝑐𝑒𝑛𝑡𝑒𝑟,𝑑𝑗, which 

is the centre of clan 𝑑𝑗 and 𝑤𝑑𝑗,𝑖,𝑐 which one is the 

elephant's dthdimension 𝑤𝑑𝑗,𝑖,𝑐. 

 

3.3.2.2 The separation of Operator 
 

The process by which a male elephant departs from 

his family can be represented as a separation operator 

for use in optimization algorithms. According to Eq. 

(11), the elephant with the lowest fitness in each 

generation is responsible for implementing the 

separation operator. 

 

𝑤𝑤𝑜𝑟𝑠𝑡,𝑑𝑗 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛 + 1) × 𝑟𝑎𝑛𝑑    (11) 

 

Where 𝑤𝑚𝑖𝑛 denotes the individual's lower limit and 

𝑤𝑚𝑎𝑥  represents the individual's upper bound. The 

weakest member of clan ci is indicated by𝑤𝑤𝑜𝑟𝑠𝑡,𝑑𝑗. 

The random variable Rand [0, 1] ranges from 0 to 1. 

The mainframe of EHO is summarized as described 

by the operator responsible for clan updates and the 

operator accountable for separating. The following 

flow diagram shows this. The maximum generation is 

MaxGen. Here are the fundamental stages of the 

EHO, as shown in Algorithm 1. Figure 2 displays the 

matching flow diagram. 

 

Algorithm 1: Hybrid Elephant herding optimization 

(HEHO) 

(1) Start 

(2) Beginning. Define the starting point for 

iterations 𝐻 = 1; to begin with the group 𝑂 without 

prior planning; determine the highest possible output 

𝑀𝑎𝑥𝐺𝑒𝑛. 

(3)  While failure to meet the stopping 

requirement do 

(4) Arrange the population in descending order of 

fitness. 

(5) For every group 𝑑𝑗do 

(6) For elephant 𝑖 in the clan 𝑑𝑗do 

(7) Produce 𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖 =and inform 𝑦𝑑𝑗,𝑖by Eq. (8). 

(8) If 𝑦𝑑𝑗,𝑖 = 𝑤𝑏𝑒𝑠𝑡,𝑑𝑗 then 

(9) Produce 𝑤𝑛𝑒𝑤.𝑑𝑗,𝑖and inform 𝑦𝑑𝑗,𝑖by Eq. (9). 

(10) Finish if 

(11) Finish for 

(12) Finish for 

(13) For all clans 𝑑𝑗 do 

(14) Take over from the worst person 𝑑𝑗 by Eq. 

(11). 

(15) Finish for 

(16) Assess every elephant based on its location. 

(17)  𝑆 =  𝑆 +  1. 

(18) finish while 

(19) Finish. 

 

 
 

Figure 2. The EHO algorithm's flowchart 

 

3.3.2.3 Examination of the Complexity of 

Algorithms 

 
The algorithm's computational complexity is examined 

according to the steps of the EHO algorithm. Assume 

that MO is the population size and C is the dimension. 

Sorting the population in step (4) according to 

individuals' fitness is complicated in time of 𝑃(𝑀𝑂), as 

it is evident. Given the intricacy of time 𝑃(𝑀𝑂 ×  𝐶), 

run the clan-updating user that can access all clans 𝑑𝑗 in 

steps (5)–(12). Perform the separation operator for each 

clan 𝑑𝑗 in steps (13)–(15) with a time complexity 

of 𝑃(𝑀𝑂). Evaluate eachelephant based on its location 

in stage (16), the difficulty of which is time-related 

to 𝑃(𝑀𝑂). 𝑃(𝑆 ×  𝑀𝑂 ×  𝐶)Is theoveralltime 

complexity required to accomplish this task in elephant 

herding optimization. After removing the low-order 

components, the EHO algorithm's overall time 

complexity is 𝑃(𝑆 ×  𝑀𝑂 ×  𝐶), which is connected to 

S, MO and C, according to the findings given above. 

 

In this study, Intel® Core i9 CPUs running Windows 11 

and a laptop with 8.00 GB of RAM are employed in 

conjunction with the Python platform to access data. 

The relationship between the fault-proneness of 

software modules and the static code metrics, most 

notably McCabe's complexity metrics, is investigated 

and presented in this part. The section examines and 

explains the link. For the purpose of carrying out the 

analysis, a confusion matrix, area under the curve 

(AUC) and accuracy requirements are used. This section 

discusses the findings of the research as well as the 

results of empirical assessments. 
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4. RESULT 
 

4.1 Accuracy Measure 

 
Classifier efficiency is measured using the Accuracy 

metric. Table 1 summarizes the results of 30 different 

classifiers in terms of the Accuracy metric. 

Specifically, the HEHO-CLSTM model demonstrated 

its efficacy in the particular environment with 

impressive accuracy percentages of 90.97%, 91.35%, 

90.60% and 95.30% for the dataset of CM1, KC1, 

KC3 and PC2, respectively. As seen in Figure 3, the 

Accuracy metric was assessed using the graphical 

depiction. 

 

Table 1. Comparison of Accuracy measure 

Methods 
Accuracy (%) 

CM1 KC1 KC3 PC2 

ANN  0.8996 0.8482 0.8371 0.9296 

NB  0.8735 0.8307 0.8409 0.9017 

DT  0.8494 0.8373 0.8065 0.9089 

KNN  0.8614 0.275 0.8084 0.7682 

HEHO-CLSTM 

(Proposed) 
0.9097 0.9135 0.906 0.953 

 

 

Figure 3. Outcomes of Accuracy measure 

 

4.2 Buggy instance  
 

When comparing the number of modules that were 

recognized as having bugs to the number of modules 

that were correctly identified as clean, it is essential 

to conduct the comparison using a logical manner. 

Incorrectly identifying a clean instance as a problem 

is linked with a number of costs, while the costs 

associated with missing a bug instance are far higher. 

Table 2 and Figure 4 displays the results of an 

analysis of the proportion of buggy modules that 

were accurately predicted in light of this perspective 

on avoiding the omission of "risky" modules. Equal 

to this percentage is the predictor's sensitivity. In 

particular, for CM1, KC1, KC3 and PC2, the HEHO-

CLSTM model showed buggy  
 

Table 2. Comparison of Buggy instance 

Methods 
Buggy Instance (%) 

CM1 KC1 KC3 PC2 

DT  20.4 27.9 47.66 15.58 

KNN  24.48 64.41 48.59 41.55 

ANN  8.16 13.19 29.9 2.59 

NB 22.44 26.68 43.05 18.18 

HEHO-CLSTM 

[Proposed] 
30.15 67.15 50.29 45.09 

 

 

Figure 4. Outcomes Buggy instance 

 

4.3 Area under the curve (AUC) Measure 

 
The area under the ROC curve is the next 

performance metric. The proximity of the AUC value 

to '1' was measured. If the AUC is 1, then the 

classifier is accurate in its predictions. The AUC for 

each of the 30 classifiers is shown in Table 3. The 

ANN classifier achieves a maximum AUC of 0.8315 

developed with the KC2 dataset. Figure 5 displays 

the AUC for classifiers arranged by dataset; The 

AUC percentages of 0.7598, 0.8095, 0.8560 and 

0.7598 for CM1, KC1, KC3 and PC2, respectively, 

indicate the efficacy of the HEHO-CLSTM model in 

differentiating between positive and negative 

occurrences in the specified classification tasks.  

  
Table 3. Comparison of AUC Measure 

Methods 
AUC  

CM1 KC1 KC3 PC2 

DT  0.5289 0.6828 0.7104 0.5863 

KNN  0.5868 0.5741 0.6887 0.605 

ANN 0.7286 0.7878 0.8315 0.7187 

NB  0.6592 0.7442 0.7816 0.6053 

HEHO-CLSTM 

[Proposed] 
0.7598 0.8095 0.856 0.7598 

 



Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 363-372, doi: 10.24874/PES.SI.24.02.019 
 

369 

 

Figure 5. Outcomes of AUC Measure 

 

5. DISCUSSION  

 
According to (Goyal S & Bhatia P.K (2020)), there are a 

few restrictions that are related to ANN. They function 

in a "black box," which means that the intricate links 

that are found inside the network are impossible to 

understand or explain. This is one of the most 

significant downsides of these systems. Because of this 

lack of transparency, ANNs cannot be as trustworthy in 

critical applications where it is essential to have a solid 

grasp of the decision-making process, such as in the 

healthcare or financial sectors. An excellent example of 

such an application is here. In addition, ANN could 

need a significant amount of labeled data to be trained 

efficiently. This would make them computationally 

expensive and unsuitable for tasks that entail a limited 

dataset size. Another cause for concern is the danger of 

over fitting, which can occur when the model performs 

well on the data that it was trained on but poorly on data 

that it has never seen before. This demonstrates the need 

to find regularization strategies and do comprehensive 

model validation. The NB (Goyal S & Bhatia P.K 

(2020)) approach has a number of drawbacks, one of 

which is that it assumes the independence of the 

characteristics that are evaluated, which cannot be the 

case in some instances that occur in real life.    The 

assumption that the qualities are independent of one 

another is made by the model, which is based on the 

class label. This can result in performance that could be 

better when dealing with data that indicates correlation. 

When presented with intricate relationships in the data 

or when attributes have significant interactions with one 

another, NB has a propensity to provide poor results. 

This is because of the previous point. This simplistic 

assumption can limit the model's ability to capture 

complex interactions, which would result in the model's 

less effective performance in some challenging tasks. 

Despite the fact that the assumption is straightforward 

and can be calculated with relative ease, this is the 

situation that unfolds. Over fitting is an issue that can 

occur when utilizing DT (Goyal S & Bhatia P.K 

(2020)), which is troublesome when dealing with big 

datasets. This problem can appear while working with 

trees. It is difficult for them to generalize to new 

circumstances when they become too complicated and 

unique to the training data. Additionally, trees are 

subject to noise in the data, which can result in several 

trees having virtually the same prediction value. This 

can be a difficult situation to deal with. In addition, 

there are instances in which alternative machine 

learning algorithms can perform better than them in 

terms of the accuracy of their predictions and the 

durability of their models. Furthermore, these 

algorithms can need help collecting complex 

correlations in the data. KNN (Goyal S & Bhatia P.K 

(2020)) has a number of drawbacks, one of which is that 

it is sensitive to the distance metric that is used, as well 

as the curse of dimensionality. The relevance of the 

distance between data points is diminished as the 

number of characteristics increases, which results in a 

dramatic decline in performance. With large datasets, 

KNN could be more efficient since it compares each 

query instance to the training instances and calculates 

the distance between them. This is true when dealing 

with large datasets. In light of this, it is possible that 

KNN is not suited for large-scale applications that are 

used in the real world because of its prohibitive 

processing needs. In order to solve this issue, they made 

use of the Intelligent HOI-CLSTM that is incorporated 

into LSTM. This tool improves the performance of the 

model by increasing its ability to adapt to new and 

diverse inputs, which results in an improved accuracy, 

quicker convergence and overall better outcomes. 

 

6. CONCLUSION  

 
In this study, there is a significant amount of potential 

for development in the field of automated software 

quality evaluation that makes use of a breakthrough 

artificial intelligence approach. Artificial intelligence 

(AI) approaches that are innovative increase the 

accuracy, efficiency and flexibility of software quality 

evaluation. Using this strategy, evaluation is 

strengthened and automated, which results in improved 

software development operations. Interpretability and 

data bases are two issues that need to be addressed to 

ensure that advanced AI algorithms for software quality 

assessment are used in a manner that is reliable and 

ethical. To evaluate the effectiveness of software 

prediction algorithms, this research compares four 

distinct classifiers to five software defect datasets taken 

from the repository. The datasets were used to analyze 

software defects. In order to provide an empirical 

assessment of machine learning techniques the objective 

of this project is to provide such an assessment for the 

purpose of software quality prediction. Through the 

course of this investigation, they formulate the task of 

software quality prediction as a two-class classification 

issue, which can be carried out with the assistance of 

machine learning techniques. Static code metrics are 

used in the process of developing prediction models, 
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which are assessed using the AUC and accuracy 

metrics. The following are the outcomes of the 

MATLAB experiments and discourse: A total of thirty 

quality predictors were developed, trained and assessed 

by using five distinct machine learning algorithms on 

five datasets taken from the repository, one of which 

was the data pertaining to defect prediction. It has been 

discovered that static code metrics are, in fact, an 

adequate indication of the quality of software that will 

be developed in the future. The effectiveness of the 

created classifiers is evaluated and a comparison is 

carried out with the aid of the metrics along with charts 

that are required. AUC percentages of 0.7598, 0.8095, 

0.8560 and 0.7598 for CM1, KC1, KC3 as well as PC2 

indicate the model's exceptional discriminative ability. 

The HEHO-CLSTM model showed impressive 

accuracy, successfully identifying software problems 

with percentages of 30.15%, 67.15%, 50.29% and 

45.09%. When it comes to future work on automated 

software quality evaluation utilizing a one-of-a-kind AI 

approach, one of the most important goals should be to 

enhance the adaptability of the AI models so that they 

can adjust to changing software environments and 

industry standards. Increasing the flexibility and 

accuracy of the evaluation system can be accomplished 

by including feedback loops from end-users and 

mechanisms for continuous learning. Furthermore, to 

conduct assessments that are efficient and focused, it 

would be beneficial to study the potential of automating 

the process of identifying and ranking the importance of 

software quality criteria according to the specific 

requirements of a particular project. 
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