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A B S T R A C T 

The proactive exploration and avoidance of errors or variations from quality 

standards during the manufacturing process is referred to as “early quality 

detection” in the manufacturing industry. Post-production inspection, which 

can be expensive and time-consuming, is used in traditional quality control 

systems. To overcome this, we proposed a Modified gravitational search 

algorithm-based decision tree (MGSA-DT) to predict the quality of 

manufacturing processes at an early stage. We gathered sensors data in the 

manufacturing industry. In order to prepare the data for principal component 

analysis (PCA), Z-score normalization is used. Then, the essential features 

are extracted from the preprocessed data. To assess the effectiveness of the 

suggested approach in terms of accuracy (98.4%), precision (97.6%) and 

recall (97.2%), respectively. Implementing early quality detection techniques 

in manufacturing has demonstrated encouraging outcomes in enhancing the 

overall quality of products and decreasing production expenses. 

© 2024 Published by Faculty of Engineeringg  

 

 

 
 

1. INTRODUCTION 
 

Early detection in manufacturing is the proactive 

detection of possible difficulties or flaws in the 

production process before they escalate into more 

substantial problems. Employing this approach is 

essential for guaranteeing the quality of the product, 

minimizing waste and maximizing overall efficiency 

(Scime, L., et al., 2020). To accomplish early detection, 

a range of technologies and approaches are used, such 

as sophisticated sensors, real-time tracking structures 

and predictive analysis (Ren, Z., et al., 2020).  

An essential factor in early detection is the use of sensor 

technology throughout the entire manufacturing process. 

The sensors gather data on many factors like temperature, 

pressure, motion and other essential metrics (Iqbal, R., et 

al., 2019). Through the examination of this up-to-date data, 

producers can detect deviations from the standard, 

indicating possible problems in the production process 

(Westphal, E., & Seitz, H., 2021). For instance, a rapid 

increase in temperature could suggest a defective apparatus 

or an anticipated equipment breakage. 

 

This enables producers to apply preventative actions 

before the occurrence of any issues, hence decreasing 
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the amount of time that production is stopped and 

lowering the probability of faulty items that are released 

into the market (Xu, K., et al., 2020). Predictive 

analytics could improve maintenance plans by 

determining the most advantageous periods for 

equipment care, therefore preventing needless delays in 

the manufacturing process (Ayvaz, S., & Alpay, K., 

(2021)). Timely identification not only enhances the 

quality of the product but also minimizes the total 

expenditure of production.  

 

Manufacturers could save expensive repairs garbage and 

guarantee claims by recognizing and resolving defects at 

an early stage. Furthermore, it optimizes the overall 

efficacy of the manufacturing process by reducing periods 

of inactivity and guaranteeing that machinery functions at 

its maximum capacity (Saqlain, M., et al., 2019). Early 

identification in production is a preventive and data-driven 

strategy that uses sensor technology while predictive 

analysis to identify and resolve possible problems before 

they have a negative influence on product quality or 

interrupt the production process (Oduoza, C. F., 2020). 

 

Proactive quality assessment is a strategic method used by 

organizations to examine and guarantee the quality of 

goods or services at different stages of the manufacturing 

or service-delivering process (Shcherbakov, M. V., et al., 

2019). Proactive quality assessment differs from standard 

quality control approaches by emphasizing the prevention 

of problems before they arise rather than checking final 

items for flaws. Proactive quality evaluation involves the 

implementation of rigorous quality standards, extensive 

risk assessments and the use of modern monitoring tools 

and procedures by enterprises (Nguyen, G., et al., 2020).  

 

Proactive quality evaluation entails the incorporation of 

modern technologies, real-time tracking systems and 

thorough data collection methods to detect and resolve any 

quality problems in the initial phases of production. The 

change towards a proactive strategy not only improves the 

quality of products but also reduces the chances of faults 

spreading downstream, leading to higher efficiency, lower 

costs and enhanced satisfaction with the product (Stelnicki, 

A. M.,  et al., 2021). The manufacturing industry serves as 

the foundation of worldwide economic progress, 

comprising a wide array of industries that manufacture 

essential products for daily existence. Manufacturing 

encompasses a wide range of industries, including 

automotive, technology, healthcare and consumer goods. It 

requires the complex utilization of new technologies and 

intricate procedures to convert raw materials into 

completed products (Saengthong, D., 2023). 

 

(Suman, S., & Das, A., 2019) suggested diagnostic 

statistic captured the associate features' contribution, 

associate features were those with a strong association 

between the primary characteristics that constitute the 

leading cause of the identified issue. A multi-layered or 

multi-strata statistical process monitoring technique has 

been attempted to be developed. A latent factor score-

based exponential weighted moving average (EWMA) 

graph was the monitoring statistic utilized for the early 

identification of the faulting condition. (Lee, W., & Seo, 

K., 2021) provided two iterations of feature extraction 

methods that used machine learning algorithms and the 

closest neighbor to detect equipment failures. The 

methods were based on multi-stream monitoring system 

information. It was crucial to identify machine failure to 

perform the required maintenance to avoid the system 

from breaking down unexpectedly. (Fan, S. K. S., et al., 

2020) analyzed the significance of equipment sensor 

SVIDs using the random forest algorithm, filtered the 

key SVID using k-means and integrated several 

machine learning techniques to validate the key SVIDs 

that determine critical processing times along with 

stages. A research was done to test the suggested data-

driven model for fault identification and diagnostic 

purposes. 

 

(Peres, R. S., et al., 2019) identified dimensional flaws in 

an actual automotive multiple-stage assembly process, a 

number of classification algorithms based on machine 

learning were developed and assessed using a variety of 

metrics. In complicated multistage production processes, 

where unknown faults could easily spread downstream, 

material dimensional variation plays a critical role in 

quality control. The line consists of two automated 

inspection stages separated by a number of manually 

controlled assembly and pre-alignment procedures. A 

quick surface defect detection technique for directed 

energy deposition (DED) was suggested (Chen, L., et al., 

2021). Early detection of surface flaws in the AM process 

was necessary to prevent a further decrease in the 

component quality. The system used a combination of 

supervised and unsupervised machine learning approaches 

to identify and categorize surface flaws. An accuracy of 

93.15% was obtained in surface defect detection using the 

verified indicated approach. (Imoto, K., et al., 2019) used a 

transferred learning-based Convolutional neural network to 

classify defects automatically. It focused on a defect 

analytics challenge that requires engineers to utilize the 

outcomes of defect categorization to determine the reasons 

behind productivity decrease. Using actual semiconductor 

manufacture information, they assessed the effectiveness of 

their suggested approaches by applying them to a defect 

identification task that included the use of an electron 

microscope image (Karatas, M., et al., 2022). 

 

(Ghahramani, M., et al., 2020) used Deep Learning and 

Evolutionary Computing methods to make semiconductor 

production smart. They provided a dynamic approach for 

addressing a number of issues and gain important insights 

into semiconductor production processes. Their intention 

was to provide organizations access to efficient predictive 

technologies by offering an enhanced solution for 

managing production processes and gaining insight on 

several aspects. (Chacko, M., 2021) enhanced 

manufacturing effectiveness and adaptability in the context 

of Industry 4.0 activities, the Digital Twin-based Cyber-

Physical Quality System (DT-CPQS) idea incorporates 
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automated quality assessment, simulations and estimation 

of manufacturing procedures. Those decreased the 

inspection time and enable the operator to make necessary 

corrections before the resulting component experiences a 

quality failure. The production process would advance 

toward an independent quality platform for zero failure 

production in the future because of DT-CPQS. (Shahin, 

M., et al., 2023) provided updates on the investigation of 

over 20 defect detection models through some 

technologies. Manufacturers could identify possible fault 

conditions in operations to prevent interruptions caused by 

unanticipated tool usage or inadequate work piece quality 

by detecting prospective machine failure. The final 

findings showed that the gradient boosting and deep forest 

algorithms had extremely high average accuracy levels 

(over 90%) (Javaid, M., et al., 2021). 

 

(Yu et al., 2019) provided a framework for big data that 

uses actual industrial big data collected from large-scale 

worldwide manufacturing to execute problem 

identification and diagnosis in advance maintenance. A 

collaborative firm has integrated the suggested detection 

method into its real-time industrial production system. 

Intelligent machines have been developed as a result of the 

digital age, transforming the industrial sector into smart 

manufacturing. (Ammar, M., et al., 2021) offered an in-

depth examination of diverse Industry 4.0 technology 

designed to improve manufacturing processes and the 

quality of materials. They created an extensive inventory of 

the many technologies currently accessible, together with 

their distinct qualities and the advantages they offer for 

efficient administration in emerging industries. These 

technologies minimised disconnects in communication and 

assist in staying current with data. Utilizing Industry 4.0 

technology, smart predictive modelling would effectively 

monitor machinery in industries. (Dalzochio, J., et al., 

(2020)) concentrated on systems that use logical thinking 

and "machine learning (ML)" to perform maintenance 

forecasts in the context of Industrial 4.0. The forecasting of 

failures incorporated the utilization of concepts such as an 

advanced system that predicts service outcomes as well as 

assists in making choices and creating plans. It was 

important to emphasize that maintenance prediction was a 

highly relevant subject in the framework of Industry 4.0. 

However, there were numerous obstacles that require more 

exploration in the domain of ML and the use of deduction. 

 

(Orrù, P. F., et al., 2020) provided a fundamental and 

readily applicable machine learning (ML) algorithm for 

predicting faults in centrifugal pumps at an early stage in 

the gas and oil industry. Possible defects were identified 

and categorized, guaranteeing high precision in forecasting. 

The findings from their initial investigation demonstrated 

that the model identifies patterns of system departures from 

normal operation and generates alerts to predict faults. 

Their model served as a decision support system for 

maintenance employees, helping them prevent potential 

failures. (Liu, H., & Wang, L., 2020) presented a remote 

human-robot collaboration system that corresponds to the 

principles of cyber-physical systems. The implemented 

system has the capability to operate in four distinct modes, 

each suited for specific conditions. A remote robot 

management system and a model-based presentation 

system were developed by employing a teamwork robot 

and a manufacturing robot. The certain investigation 

revealed significant potential for implementing the created 

technology in a hazardous production environment. A 

proactive maintenance system based on data analysis was 

created (Ayvaz & Alpay 2021) for manufacturing 

production processes. The system's efficacy was evaluated 

by analyzing real-world manufacturing-related IoT data. 

The assessment findings demonstrated the efficacy of the 

forecasting maintenance system in detecting early 

indications of possible failures, therefore mitigating the 

occurrence of production interruptions. The most 

successful machine learning models identified in the 

current investigation have been included into the 

operational system in the factory. (Arinez et al., 2020) 

utilized a hierarchical organizational approach, employed 

in industrial facilities, their study analysed the interactions 

occurring at both the macroscopic systemic and the 

microcosmic level of individual materials entering 

processor flows. The study covered a diverse variety of 

subjects, including productivity and excellence, 

management control in human-robot cooperation, process 

tracking, diagnosis and prediction for improvements in 

technological advances materials for the purpose of 

attaining desired material qualities through simulation of 

processes and management. (Xu, D., et al., (2022)) 

developed an innovative method for predicting failures by 

combining a gated recurrent unit with an automatic 

encoder. Their approach intends to enhance the 

effectiveness of unbalanced learning. The development of 

efficient and accurate failure identification and prediction 

techniques was crucial for minimizing losses and an 

increasing number of algorithms depend on sophisticated 

machine learning technology. The failure predictions 

algorithm was implemented in an actual paper as well as 

fibber mill identified and predicted instances of sheet 

breaking during production. 

 

The study proposes the Modified Gravitational Search 

Algorithm based Decision Tree (MGSA-DT) as a 

method for predicting the quality of manufacturing 

processes in their initial phases. 

 

1.1  Contribution 

 
● We gathered sensors data in the manufacturing. 

● Z score normalization is a technique used to 

standardize the values of different variables to a 

consistent scale. 

● Principal component analysis (PCA) processed the 

raw data into processable numerical characteristics 

to maintain the information from the original data 

set unchanged. 

● Modified gravitational search algorithm based 

decision tree (MGSA-DT) for predicting 

manufacturing process quality in advance. 

 



Singh et al., Proactive quality evaluation: a novel strategy-assisted early detection in manufacturing 

 

 346 

The remaining study components might be classified: 

The approaches are discussed in section 2. The 

experiment's findings are presented in section 3. 

Discussions are presented in section 4. The last section 

of this paper, section 5, is the conclusion. 

 

2. METHODOLOGY 

 
This study suggests using a modified gravitational 

search algorithm-based decision tree (MGSA-DT) for 

predicting manufacturing process quality in advance. 

We collected information by locating sensors and data 

collection devices in the manufacturing sector. Principal 

component analysis (PCA) is used to extract the 

pertinent feature from the pre-processed data after Z-

score normalization. Figure 1 illustrates the general 

flow. 

 

 

Figure 1. General flow 

 

2.1 Dataset 

 
We gathered sensors data in the manufacturing industry 

(Kao, H. A., et al., 2017). The collection contains 1567 

samples, with each sample containing 590 

manufacturing operation characteristics and 1 quality 

variable. From the entire dataset, only 104 examples 

indicate instances of failure. The operation variable 

information is obtained from a specific process control 

sensor in the electronic production machine and it is 

given an identification number corresponding to the 

sensor ID. In order to generate a balanced dataset with 

equal representation of positive and negative instances, 

the boosting technique is utilized. As a result, the 

number of unsuccessful instances in the dataset is 

increased to 1456. The testing and training information 

are partitioned from the initial dataset in a ratio of 3:1. 

 

2.2 Data preprocessing 

 
Z-score normalization is an essential data 

preprocessing step in early quality predictions for 

manufacturing. Through standardizing the variables, 

it guarantees a uniform scale throughout the dataset. 

Z-score normalization reduces the effect of differing 

feature scales by converting the information into a 

standard distribution with a mean of 0 and the 

standard deviation of 1. 

 

2.2.1 Z-score normalization 
 

The vector of every characteristic contained in the input 

data is normalized by using the mean and standard 

deviation of every characteristic over a sequence of 

learning data. We compute the mean and standard 

deviation for every characteristic. The following 

equation represents the equality utilised in the method, 

𝑤′ shows the normalised data, the input variable𝑤𝑖 , the 

average value of the input variable𝜇
𝑖
 and the standard 

deviation of the inputs variable𝜎𝑖 in Equation (1) 
 

𝑤′ =
𝑤𝑖−𝜇𝑖

𝜎𝑖
   (1) 

 

This approach standardizes every characteristic in the 

data set by setting its mean to zero and its normal 

deviation to one. As part of the method, the vectors of 

features in the information set are first subjected to 

normalization. The mean and standard deviation are 

computed for each feature using the training data and 

retained as weights for the final system design. 

Essentially, this approach is an initial processing step in 

the construction of an artificial neural network. 

 

2.3 Feature extraction 

 
Principal Component Analysis (PCA) is a crucial 

process for improving the efficiency and efficacy of 

early forecasting models for quality in the 

manufacturing business. It involves extracting relevant 

features. PCA offers an organized technique for 

reducing dimensionality in manufacturing datasets, 

which contain several variables, while preserving 

crucial information. 

 

2.3.1 Principal component analysis (PCA) 

 
PCA is a statistical method that uses data to create a 

model. It takes a group of variables that are related to 

each other and reduces them to a small set of 

independent additional factors. These new variables 

retain a significant amount of the details in the initial 

form. Let W be the input dataset, with an ordered 

collection of m-dimensional values represented by every 

column. Furthermore, it is important to note that every 

function in the collection of values has a zero 

average (𝐸(𝑊)  =  0). An information matrix in its 

original form consists of 𝑚 samples and 𝑛 variables, 

which can be represented as follows in Equations (2-5): 
 

𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑚]𝑆 = (𝑤11  ⋯ 𝑤1𝑛  ⋮ ⋱ ⋮
 𝑤𝑚1  ⋯ 𝑤𝑚𝑛 )                  (2) 
 

PCA allows for the conversion of environmental 

performance requirements and data variables inputs that 

preserves as much of the original data as is practical into a 
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new event space. Determining the instructions allows one 

to achieve this are concerned in the input information sets 

that have the highest amount of variation and projecting 

them into a new subspace that has the same space. 

Consequently, an orthonormal conversion Y can be 

used in the manner that follows to relocate W to an 

alternate location S: 
 

𝑆 = 𝑌𝑊    (3) 
 

A linear process yields the orthonormal variables that 

form the entire S-matrix of information mixture of 

components from the W-matrix. This combination 

describes the relationship between the samples. The 

𝑆matrix of covariance is defined as: 
 

𝐷𝑆 = 𝑌𝐷𝑤𝑌𝑆   (4) 
 

The variable 𝐷𝑤 represents the matrix of covariance for 

the variable𝑊. 

 

The weighting matrices 𝑌 can be obtained by solving 

the eigenvalue equation: 
 

(𝐷𝑠 − 𝜆𝐽)𝑓𝑗 = 0   (5) 
 

The covariance matrix contains the bilateral covariances 

between the several input variables. 

 

The matrix of covariance's eigenvalues and 

eigenvectors are deconstructed (as shown in Equation 

(5)). The resulting eigenvectors represent the new 

orthogonal elements, referred to as “principal 

components”, with the associated eigenvalues 

characterize their magnitudes. Following an ordered 

sequence of the eigenvalues and associated 

eigenvectors, the main elements will also be arranged in 

that same order. The first principal component will 

possess the highest variance, indicating the most 

significant information. The subsequent principal 

component will exhibit the second highest variance and 

so on. It is important to mention that the main 

components obtained are not associated with one 

another, regardless of the correlation between the input 

parameters. This is because the reduced eigenvector are 

orthogonal. 

 

2.4 Modified gravitational search algorithm 

based decision tree (MGSA-DT) 
 

A new technique that combines the decision-making ability 

of a decision tree with the optimization capabilities of the 

MGSA is the Decision Tree. Using the GSA, this 

methodology searches the ideal hyper parameter 

configuration, such as the decision tree's optimum depth, to 

improve the predictive reliability of the model. 

 

2.4.1 Modified gravitational search algorithm 
 

In the conventional GSA method, the adjustment of the 

search operator's location is identified by the gravitational 

impact of the operator. This impact influences the 

acceleration value, which in turn affects the searching step 

size of the operator. It establishes the algorithm's global 

search capability and convergence efficiency. Moreover, it 

is worth mentioning that in the GSA, the value in the 

method is a constant number. This characteristic leads to a 

rapid convergence of the algorithm, which could result in 

the algorithm that is trapped in a local answer when 

working with certain multi-peak objective measures. To 

increase the value of𝛼, the lower number is achieved early 

in the algorithm by increasing the search step duration of 

each iteration to expand the search domain, which 

improves the performance of the global search, later on, the 

lower value is obtained by reducing the search steps length 

to allow the fine search to identify the optimization 

solution. The distribution of the population diversity 

indicator (ED), which could reflect the dispersion of people 

throughout the population searching space, is presented at 

this stage. This indicates the degree to which the algorithm 

works. Its expression is generally as follows in Equations 

(6-9): 
 

𝐸𝐷 =
∑𝑀

𝑗=1
√∑𝐶

𝑖=1 (𝑊𝑗𝑖
𝐿−𝑊𝑖

𝐿)
2

𝑀×𝐾
  (6) 

 

The population size is denoted by𝑀, the feature 

dimension by D, the inner population centre is indicated 

by𝑤, the number of cycles is L and K is half of the 

diagonal width of the solution space. 

 

The diversity indicator ED has a value range of (1,0) 

and the population's diversity decreases with decreasing 

ED value not the other way around. The evolution 

degree indexing parameter 𝐷𝑁 is added and the 

following expression for the equation appears: 

 

𝐷𝑁 =
𝑓𝑖𝑡𝑎𝑣𝑒(𝑠−1)−𝑓𝑖𝑡𝑎𝑣𝑒(𝑠)

𝑓𝑖𝑡𝑎𝑣𝑒(𝑠)
   (7) 

𝑓𝑖𝑡𝑎𝑣𝑒(𝑠)represents the mean of the total particle fitness 

at time s. 

 

In the MGSA method, the attenuation coefficient 𝛼 has 

the following value based on the information above: 
 

𝛼(𝑠) = 𝛼(𝑠 − 1) + 𝐷2 × (𝐹𝐶 − 𝐷𝐵) +

𝐷3 × (𝐷𝐴 − 𝐷𝑁)                  

(8) 
 

Where 𝐷2 and 𝐷3 are the corrected coefficients of 

maturity and diversity, accordingly, 𝐷𝐵 and 𝐷𝐴 are the 

comparison of maturity and diversity, as well as 𝛼(𝑠) is 

the coefficient of attenuation for the 𝑠 times iteration, 

𝛼(𝑠 − 1) is the attenuated coefficient of the final 

iteration of𝑠. In general, the coefficients 𝐷𝐵 and 𝐷𝐴 are 

considered to be (7.0, 3.0). 
 

The formula (9) yields the corrected value of the gravity 

constant and the correct value of an attenuation 

coefficient during iteration. An innovative individual 

speed updating approach is proposed in this 

investigation, using the following calculation formula: 
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𝑢𝑗
𝑐(𝑠 + 1) = 𝑟𝑎𝑛𝑑1 × 𝑢𝑗

𝑐(𝑠) + 𝑟𝑎𝑛𝑑2 × 𝑏𝑗
𝑐(𝑠)

+ 𝑟𝑎𝑛𝑑3 × 𝑑

× (𝑜𝑎𝑗
𝑐(𝑠) − 𝑤𝑗

𝑐(𝑠))                (9) 

2.4.2 Decision tree 
 

Classifier generation systems are a popular data mining 

device. Classification algorithms in machine learning 

are able to process large amounts of data. It could be 

used to categorize newly available data, classify 

knowledge based on training sets and label categories, 

to create assumptions about the names of categorical 

classes. Figure 2 illustrates the decision tree structure. 

 

 
Figure 2. Decision tree structure 

 

Decision trees (DT) are an effective technique used 

in multiple fields, such as recognition of patterns, 

processing images, and artificial intelligence. DT is a 

structured methodology that uses a series of basic 

tests to efficiently and methodically integrate results. 

Every test checks a numerical attribute up to a certain 

limit. Building the theoretical foundations is 

considerably easier than finding the exact values of 

the neural network's interconnections; DT is mostly 

used for the purpose of categorization. In addition, 

within the data analysis field, DT is a popular 

categorization model. Each tree is made of nodes and 

branches. Every node symbolizes characteristics in a 

certain category that need to be categorized and each 

subset indicates a possible value that the node could 

acquire. Due to its simple analysis and accurate 

handling of many data designs, decision trees have 

been widely used in several domains.  

 

 

 

 

2.4.3 MGSA-DT 
 

The MGSA-DT is a novel method that integrates the 

concepts of the GSA with decision tree building to 

improve optimization and decision-making in 

complicated problem environments. The GSA is 

derived from the principles of gravitation and the 

connections between the general populations yet it is 

optimized for efficient exploration of a possible 

space. The MGSA-DT framework utilizes the 

gravitational search method to maximize the decision 

tree parameters. This adaptation allows the model to 

learn from the intricate connections present in the 

manufacturing dataset. The algorithm navigates the 

solution space, adapting decision tree branches and 

nodes to identify characteristics that are predictive of 

favourable results. 

 

This improved strategy not only speeds up the 

development of the method but also improves its 

capability to handle extensive and ever-changing 

production datasets. The combination of gravitational 

search and decision tree structures enhances the 

capabilities of MGSA-DT to make a substantial 

contribution to early quality prediction in production. 

This proactive tool enables the identification of 

possible faults before they become more serious, 

thereby optimizing the manufacturing process in 

general. Algorithm 1 illustrates (MGSA-DT). 

 

Algorithm 1: (MGSA-DT) 

def 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ): 

𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

    return 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒(𝑦_𝑡𝑒𝑠𝑡, 

model.predict(𝑋_𝑡𝑒𝑠𝑡)) 

population = 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒, 

dimension) 

for iteration in range(iterations): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠 = 

np.array([𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(int(position[0] * 

tree_max_depth)) for position in population]) 

    G = G0 * np.exp(-alpha * iteration / iterations) 

    forces = 𝑛𝑝. 𝑧𝑒𝑟𝑜𝑠_𝑙𝑖𝑘𝑒(population) 

    for i in range(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒): 

        for j in range(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒): 

            if i != j: 

                r = 𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚(population[i] - 

population[j]) 

                forces[i] += (G * 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠[i] * 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠[j] / (r + 1e-10)) * (population[j] - 

population[i]) / (r + 1e-10) 

    population += forces 

    population = np.clip(population, 0, 1) 

best_solution = 

population[𝑛𝑝. 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠)] 

best_max_depth = int(𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛[0] * 

𝑡𝑟𝑒𝑒_𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ) 
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𝑓𝑖𝑛𝑎𝑙_𝑚𝑜𝑑𝑒𝑙 = 

DecisionTreeClassifier(𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ=𝑏𝑒𝑠𝑡_𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ, 

random_state=42).fit(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

𝑓𝑖𝑛𝑎𝑙_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒(y_test, 

𝑓𝑖𝑛𝑎𝑙_𝑚𝑜𝑑𝑒𝑙.predict(𝑋_𝑡𝑒𝑠𝑡)) 

print("Final Decision Tree Accuracy:", 

𝑓𝑖𝑛𝑎𝑙_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 

 

3. EXPERIMENTAL RESULTS 

 
The proposed solution is executed using Python version 

3.10.1 on a laptop running Windows 10, equipped with 

8 GB of RAM and an Intel i7 core CPU. Utilize libraries 

such as Scikit-Learn or Tensor Flow/Keras to train our 

suggested model on the training data. The suggested 

technique is (MGSA-DT) compared to existing methods 

such as Naive Bayes (Syafrudin, M.,  et al., 2018), Multi 

layer perception and XGBoost (Jung, H., et al., 2021). 

The performance of these methods is examined based 

on accuracy, precision and recall. 

 

Figure 3 displays the accuracy and loss results for both 

the testing and training information of the suggested 

MGSA-DT approach. 

 

 

 
Figure 3. Accuracy and loss 

 

The accuracy along with the dependability of the 

techniques are used to recognize and anticipate possible 

flaws or departures from quality requirements during 

the manufacture process are referred to as accuracy in 

the framework of early quality identification in 

manufacturing. It illustrates the extent to which the 

detecting system can determine a product's quality state 

earlier as shown in Equation (10). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝐹𝑃

(𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃)
  (10) 

 

Figure 4 and Table 1 display the accuracy 

performance. The proposed MGSA-DT system 

achieves an accuracy of 98.4%, outperforming the 

existing methods Naive Bayes, Multi layer perception 

and XGBoost, which have accuracies of 93.5 %, 96.7 

% and 98 %, respectively. The suggested system is 

more accurate than the present methods used for early 

quality detection in the production process. 

 

 
Figure 4. Accuracy performance 

 

Table 1. Accuracy Values 

Methods Accuracy (%) 

Naive Bayes 93.5 

Multi-Layer Perception (MLP) 96.7 

XGBoost 98 

MGSA-DT [Proposed] 98.4 

 

In the framework of early quality identification in 

manufacturing, precision refers to the system's 

accuracy and dependability in recognizing and 

predicting possible quality problems at the beginning 

of production. It calculates the percentage of true 

positive predictions, that is, the real cases of early 

quality issues that the system accurately identified 

among all the occurrences that have been designated 

as problematic as shown in Equation (11). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (11)  
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Figure 5 and Table 2 show the precision performance. 

The suggested system MGSA-DT has 97.6%, 

compared to the existing systems Naive Bayes, Multi 

layer perception and XGBoost, which are 

respectively 94.1 %, 96.8 % and 67.6 %. As a result, 

the proposed system is more precise than the current 

approaches of early quality detection in 

manufacturing process. 

 

 
Figure 5. Precision performance 

 

Table 2. Precision values 

Methods Precision (%) 

Naive Bayes 94.1 

Multi-Layer Perception (MLP) 96.8 

XGBoost 67.6 

MGSA-DT [Proposed] 97.6 

 

The capacity of an approach or method to recognize and 

retrieve occurrences of faulty or inconsistent goods 

during the early phases of the production process is 

referred to as recall in the framework of early quality 

identification in manufacturing. It highlights the 

significance of reducing false negatives by showing the 

percentage of real damaged goods that the system 

properly detects in Equation (12) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (12)                                                                                                              

 

Figure 6 and Table 3 shows the Recall performance. In 

comparison to the existing systems Naive Bayes, Multi 

layer perception and XGBoost, which have 

corresponding reliable rates of 93.6 %, 96.8 % and 

60.52 %, the proposed system MGSA-DT obtained 

97.2%. The suggested system is, therefore, more 

reliable than the present methods of early quality 

detection in the manufacturing process. 

 

Table 3. Recall values 

Methods Recall (%) 

Naive Bayes 93.6 

Multi-Layer Perception (MLP) 96.8 

XGBoost 60.52 

MGSA-DT [Proposed] 97.2 

 
Figure 6. Recall performance 

 

4. DISCUSSION 
 

The existing methods are Naive Bayes, Multi layer 

perception and XG Boost. Naive Bayes assigns equal 

importance to data, thus unnecessary or redundant 

characteristics can generate noise and adversely affect 

predicting accuracy. In manufacturing applications, 

where data can contain several dimensions and 

comprise different characteristics, there is a greater 

chance to include irrelevant features in the model. This 

could decrease the usefulness of the algorithm in 

predicting quality earlier. The efficacy of MLP models 

is dependent upon the abundance and excellence of data 

accessible for training purposes. MLPs can have 

difficulties in capturing the underlying patterns when 

presented with limited or noisy data. The reliance on 

data can provide a significant disadvantage in 

manufacturing applications, when acquiring extensive 

and superior datasets could prove to be difficult. 

XGBoost produces intricate models that present 

difficulties in interpretation, preventing domain 

specialists and operators from understanding the 

underlying reasoning behind the framework's 

predictions. In the manufacturing industry, the ability to 

understand and explain decisions is crucial. The MGSA-

DT facilitates early detection by offering a resilient 

framework for processing data in real-time. The 

incorporation of decision tree modeling enables rapid 

and precise detection of possible quality problems, 

hence enabling immediate action and minimizing the 

risk of faults spreading throughout the manufacturing 

process. 
 

5. CONCLUSION 
 

Early quality detection in the manufacturing company 

refers to the proactive identification and prevention of 

faults or deviations from quality requirements during 

the manufacturing process. The use of quality control 

measures in manufacturing is crucial for guaranteeing 

the creation of superior products, decreasing the 

occurrence of flaws and limiting the expenses 
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associated with production. In this research, we 

proposed the MGSA-DT as a means for predicting the 

quality of manufacturing processes in their early phases. 

We gathered sensors data in the manufacturing industry. 

Z-score normalization is employed for data 

preprocessing and to extract the pertinent feature from 

the pre-processed data through principal component 

analysis (PCA). When compared to the existing method, 

the proposed method achieves accuracy (98.4%), 

precision (97.6%) and recall (97.2%), respectively. 

Applying the method in extensive manufacturing 

operations could involve substantial computational 

resources and exhaustive, high-calibre information. 

Considering the use of augmented reality (AR) and 

virtual reality (VR) technologies in quality prediction 

procedures has the potential to transform operator 

education and decision-making. 
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