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A B S T R A C T 

Obtaining the requisite properties in alloys is crucial problem in the 

production of aluminium components, requiring great deal of time and effort 

for investigation and experimentation. In this study, machine-learning 

technique utilizing Bayesian-fine tuned Adaptive Gated Recurrent Unit (B-

AGRU) to forecast the mechanical characteristics of aluminium alloys is 

presented. Training and testing are conducted on dataset, which has 

undergone comprehensive preparation process that includes cleaning and Z-

score normalization. Principal Component Analysis (PCA) is used for feature 

extraction to increase algorithmic efficiency. The GRU approach, which is 

implemented in Python, hardness and yield strength, leading in more accurate 

findings. When compared to standard methodologies, process saves 

significant time and energy, as evidenced by metrics such as RMSE-20%, 

MAE-10% and R-squared-97%. This study reveals B-AGRU-based machine 

learning as a feasible strategy for enhancing efficiency and sustainability in 

forecasting mechanical properties of aluminium alloys, paving the way for 

wider application in industrial sector. 
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1. INTRODUCTION  
 

In the field of sophisticated materials, alumina 

composites stand out as a collection of substances with 

excellent mechanical properties, making them useful in 

industries ranging from aerospace to biomedical 

engineering (Raju et al., (2020)). Because of their 

unique combination of strength, hardness and thermal 

stability, these aluminum oxide (Al2O3) composites are 

suitable for a wide range of applications (Agrawal and 

Satapathy (2019)). Understanding and anticipating 

alumina composite mechanical characteristics is crucial 

for optimizing their performance in a wide range of 

applications, from spacecraft structural components to 

cutting-edge medical implants (Boopalakrishnan et al., 

(2023)). 

 

The backbone of these composites is alumina, which is 

known for its hardness and wear resistance. It is the 

deliberate incorporation of other elements, typically in 

the form of reinforcing phases or additives that unlocks 

the full potential of alumina composites. Secondary 
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phases can contain ceramics, polymers, or even metallic 

components, each of which provides unique properties 

to the resulting composite material (Kota et al., (2022)). 

The interaction of the main alumina matrix with various 

additives yields a material with customized properties, 

allowing engineers to construct materials with specified 

performance features (Lakhdar et al., (2021)). 

 

Alumina composites' physical properties are multifaceted, 

encompassing a range of characteristics including tensile 

strength, hardness, fracture toughness and fatigue 

resistance. To learn the possibilities of these materials, 

researchers and engineers use predictive models that 

account for a variety of factors influencing the physical 

properties of the composites (Goswami et al., (2022)). 

There is a complex interplay between the composition, 

processing methods and microstructure of alumina 

composites, as these factors have a significant impact on 

their mechanical responses (Cygan et al., (2019)). 

 

Predicting mechanical properties is essential for 

guaranteeing the dependability and safety of 

components composed of alumina composites along 

with optimizing material efficiency (Sharma et al., 

(2022)). In mission-critical situations, accurate 

prediction of the mechanical characteristics of 

aluminium composite might be the distinction between 

success and disaster, such as in aircraft applications 

where weight, strength and thermal stability are 

essential elements (Altıparmak et al., (2022)). 

Analogously, in the biomedical domain, predicting the 

mechanical characteristics of alumina composites is 

critical to the design of implants that can endure the 

physiological stresses imposed by the human body 

(Palmero (2019)). 

 

Banerjee et al., (2020) utilized an artificial intelligence-

driven approach, utilizing artificial neural networks 

(ANN) and genetic algorithms, to optimize the 

composition size; based on conflicting goal functions 

generated from literature data, they investigated the 

mechanical and morphological features of alumina-

reinforced composites made of aluminum matrix for 

better tribo-mechanical properties. The technique 

produces Pareto solutions for customized composite 

design, with findings proving improved performance 

while accepting study constraints.  

 

Liu et al., (2022) predicted the mechanical 

characteristics of graphene-reinforced aluminum 

nanocomposites by combining molecular dynamics 

simulations with machine learning (ML) approaches. 

Incorporating graphene volume fractions, alignment 

angle, chirality along with the temperature into MD 

simulations results in the development of ML models 

for Young's modulus and ultimate tensile strength, as 

well as the modification of the Halpin-Tsai model for 

enhanced Young's modulus accuracy in forecasting, 

allow for more practical assessment and development of 

graphene-aluminum nanocomposite material structures. 

Najjar et al., (2022) used a micromechanics model and 

finite element simulation to estimate elastic modulus 

in Cu-Al2O3 nanocomposites utilizing a rule of 

mixing and grain evolution. Using “finite element 

(FE)” outputs and experimental data, a Random vector 

functional link network machine learning model was 

developed, attaining a high R¬2 (0.99) for predicting 

yield strength in micro indentation tests on produced 

nanocomposites. The technique effectively combines 

modeling, simulation & machine learning to forecast 

mechanical parameters with excellent agreement with 

data from experiments. 

 

Yu et al., (2021) predicted the mechanical 

characteristics of aluminum alloys using a “deep 

neural network (DNN)” that was pre-trained for 

parameter initialization. The results showed that DNN 

is more accurate and more broadly applicable than 

“support vector regression (SVR) and shallow neural 

networks (SNN)”, indicating its potential for a data-

driven material design that can be extended to other 

materials. However, DNN's limitations include its 

reliance on small datasets. 

 

VarolÖzkavak et al., (2023) used artificial intelligence 

methods “convolutional neural network, deep learning 

algorithm, artificial neural network and random forest 

regression (CNN, ANN, RFR)” to be prepared the 

mechanical properties (hardness, bending strength) of 

AA 2024 Al alloys following being aged at different 

temps and duration. The best results were obtained for 

PM and FD 2024 Al alloys with CNN “(RMSE 

0.09068, R-Squared 0.93476, MAE 0.06734)” as well 

as “(RMSE 0.08578, R-Squared 0.94166, MAE 

0.06212)”, respectively limitations included reliance 

on available experimental data. 

 

Arpitha et al., (2023) used a central composites design-

response surface technique & artificial neural network 

architecture to optimize the synergistic impact of 

sugarcane bagasse & aluminum micro-fillers (1.38 to 

5.62 wt. %) of epoxy polymer composites. Both 

sugarcane bagasse and alumina micro-fillers affect 

mechanical properties, with 3.5 wt. % optimizing 

flexural qualities. Epoxy resin composites have better 

physical, thermal and mechanical characteristics, yet 

microscopy shows uniform filler distribution, verifying 

the model's correctness. 

 

Kordijazi et al., (2021) evaluated the wetting properties 

of graphite, NiAl3 and SiC-containing Al-Si alloys and 

Al composites with metal matrix using theoretical, 

experimental & machine learning (ML) approaches. ML 

models with significant positive correlations (r > 0.9) 

between predicted and observed water contact angles, 

showing robustness, include regression, ANN, “chi-

square automatic interaction detection (CHAID)”, 

XGBoost and random forest. Mechanical abrasion, 

etching and graphite addition all raise contact angles. 

With constraints due to the complexity of multiphase 
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alloy systems, they give interesting insights for 

predicting wetting qualities and comprehending 

physical events connected with alloy wettability. 

 

Rajput et al., (2022) aims to enhance stir casting for 

marine and aerospace applications of hybrid metallic 

matrix composites (Al-HMMC) based on aluminum. 

They use a decision tree regression model to forecast 

Al-HMMC's mechanical properties properly. The model 

predicts Ultimate Tensile Strength with 92.029% 

accuracy. In experimental validation on Al7075 and 

Al6061 matrices, anticipated and real UTS values differ 

by less than 10%. Machine learning can minimize 

experimental costs and time for improving Al-HMMC 

characteristics, according to the research. 

 

According to Deng et al., (2020), machine learning 

(ML), namely the “SMOreg/puk technique”, can 

forecast the Cu-Al alloy's mechanical characteristics in 

metallic powder with an accuracy that is higher than 

that of five other models. “Cu-12Al6-Ni” alloy with 

expected “tensile force (390 MPa) & hardness (HB 

139)” was produced utilizing the SMOreg/puk model, 

offering a rapid and efficient method for material 

synthesis & characterization using chemical 

composition and porosity as descriptors. The research 

provides important insights into composition design, 

even though model generalization can have limitations. 

 

According to Devadiga et al., (2019), "scanning electron 

microscope (SEM)" blend powder morphology as well 

as sintered composite structure characterization are used 

to predict density and hardness in "multi-walled carbon 

nanotubes (MWCNT)" coupled with "fly ashes 

(FA/Al)" composites using artificial neural networks 

(ANN) that connect them with encouragement quantity, 

ball milling duration and sintering time exploratory 

mechanical property determination. Based on how 

property dispersion & augmentation are affected by 

reinforcing content, ball milling duration and sintering 

time, ANN predicts mechanical properties. The trial's 

scope can restrict the range of variables and their 

generalizability. 

 

Wiciak-Pikuła et al., (2020) used “multilayered 

perceptron (MLP)” artificial neural networks to 

develop effective face grinding tool usage models for 

forecasting with “aluminum matrix composites 

(AMC)” that include 10% SiC. The models were 

evaluated using mean square error and limitations in 

“tool flank wear (〖VB〗_B)” as well as “tool corner 

wear (〖VB〗_C)” forecasting during machining were 

addressed. 

 

Wang et al., (2021) used machine learning to predict 

the creep life of Cr-Mo steel using time-temperature 

parameters Larson-Miller parameter, Manson-Haferd 

parameter and Manson-Succop parameter (LMP, 

MHP, MSP) demonstrating enhanced precision with 

random forest algorithms while offering valuable 

insights into influencing features for steel creep 

properties. Limitations include the dependence on 

conventional creep research knowledge and potential 

generalization issues. 

 

Liu et al., (2023) suggested a deep learning-based 

technique based on convolutional neural networks to 

forecast damage and deformation in self-piercing 

riveted joints of aluminum alloys and carbon fiber-

reinforced composites. The model solves the problems 

of complicated simulation and high experimental costs 

in self-piercing riveted (SPR) joint analysis by reliably 

predicting section parameters with average accuracies of 

95.80% for riveted head height, 95.68% for residual 

thickness and 92.40% for rivet spread. 

 

Hajilounezhad et al., (2021) effort was to accurately 

classify and predict the morphology and mechanical 

properties of vertically oriented carbon nanotube (CNT) 

forests through the use of an image-based machine 

learning technique and a physics-based simulation 

called CNT Net. This will enable high-throughput 

material discovery. By using synthetic images to train 

CNT Net, the technique has shown >91% accuracy in 

categorizing CNT characteristics and superiority in 

stiffness and buckling load prediction over physical 

parameter-based predictors. Constraints include the 

intricacy of the regulating processes and the extensive 

range of experimental parameters. 

 

Katırcı and Yıldız (2023) used ML algorithms Multi-

layer Perceptron, Random Forest and Extreme Gradient 

Boosting (MLP, RF, XGBoost) with improved hyper 

parameters to forecast Al2O3-Cr2O3 ceramic fracture 

behavior. RF predicted Cr2O3 ratio as critical for 

relative density, diameter for fracture strength and 

thickness for total crack length, matching actual results. 

Genetic Algorithm discovered best solution (0.7% 

Cr2O3, 28.5 mm diameter, 2.2 mm thickness, 325.8 

MPa fracture strength). Surface response 

experimentation and leave-one-out cross-validation 

were used. Results help forecast material properties, but 

generalization concerns and dataset features restrict 

them. 

 

Thirumoorthy et al., (2019) used of stir casting to 

produce Al6061 MMCs with blended MgO and Si3N4, 

with tensile properties assessed using a novel hybrid 

approach combining “K-nearest neighbor (KNN)” and 

“ant lion optimization (ALO)” methods. Validated 

against a decision tree (DT) classifier, the results show 

that KNN-ALO was effective at predicting tensile and 

hardness properties of composites, contributing to 

advancements in material processing and 

characterization. 

 

The B-AGRU model's development overcame 

challenges in capturing complicated patterns and 

connections, hence addressing the difficulty of 

forecasting mechanical features in Alumina Composites.  
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1.1 Contribution  
 

• The study gathers dataset for testing and training.  

• Pre-processing data entails Z-score normalization 

and robust cleaning for noise reduction, which 

guarantee fair along with consistent comparisons 

and improve dataset quality. 

• Using PCA is a critical step that reduces the 

dimensionality of the data while preserving 

important information, improving algorithmic 

efficiency. 

• The B-AGRU method is a powerful machine-

learning approach used in this study to forecast the 

mechanical characteristics of aluminum alloys. 

 

The remaining part of the study: part 2 discusses the 

methodology, part 3 assesses the efficiency of the 

proposed method and part 4 concludes the paper. 

 

2. METHODOLOGY  
 

In the section, the research forecasted the mechanical 

properties of aluminum alloys using the potent 

machine-learning technique known as the B-AGRU 

technique. Gathering data set, the data cleaning and 

z-score normalization is used for pre-processing. The 

feature extraction using a PCA, Figure 1 illustrates 

the structure of methodology. 

 

 
Figure 1. Overview of methodology. 

 

2.1 Data set  

 
In this research, a total of 130 datasets were acquired 

from material matching experiments (Devi et al., 

(2020)). These datasets encompass various 

compositions of aluminum alloys, yield strength, 

hardness and tensile strength of aluminum composites, 

with matching values. The specific details of these 

values are presented in Table 1. 

 

Table 1. Mechanical properties of aluminum alloys. 

Sl. 

number 

Cr 

% 

Mn 

% 

Si 

% 

Cu 

% 

Fe 

% 

Z 

r% 

Al 

% 

Zn 

% 

Mg 

% 
Other 

Yield 

strength 

Tensile 

strength 
Hardness 

1 0 0.3 0 79.1 4.7 0 11 0 0 0 850 185 -70 

2 0 0 0.6 0 0.6 0.1 96.3 0 1.5 0 135 60 -44 

3 0 1.2 2.2 0.2 0.7 0 95 0 0.5 0 200 170 -44 

- - - - - - - - - - - - - - 

- - - - - - - - - - - - - - 

128 0 0.55 11 0.35 0.65 0 86.05 0.35 0.45 0.2 180 380 -80 

129 0 0.45 1.5 0.05 0.55 0 90.5 0.1 6.5 0.2 219 250 -65 

130 0.1 1 0.8 4.6 0.8 0 87.8 0.8 1.8 0.2 370 250 -100 

 

2.2 Data pre-processing 

 
Data pre-processing is the process of preparing and 

altering raw data before utilizing it in machine learning 

or analytical algorithms. To provide a constant scale for 

accurate modeling and analysis throughout the 

prediction phase, Z-score normalization is utilized to 

normalize the features. Data cleaning is used to resolve 

missing or incorrect values as part of the data pre-

treatment procedure to forecast the mechanical 

characteristics of Alumina Composites.  

 

2.2.1 Data cleaning 

 
Data cleaning, an essential part of data preparation, is 

locating and fixing mistakes, inconsistencies and 

inaccuracies in a dataset to improve its dependability and 

quality. As part of this procedure, missing values are 

handled via imputation or elimination; errors in data inputs 

are identified and corrected as well as formats are 

standardized to promote uniformity. To verify the integrity 

of the data, it entails evaluating it against predetermined 

rules or statistical criteria. Data cleaning seeks to improve 

the accuracy and efficacy of data-driven decision-making 

processes by methodically resolving these problems and 

producing a cleaned dataset that provides a strong basis for 

further analysis and modeling. 

 

2.2.2 Z-score normalization 

 
In predicting the mechanical properties of Alumina 

Composites, Z-score normalization entails adjusting the 

raw data to have a mean of zero and a standard deviation 

of one, maintaining uniform scales for different features 



Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 271-280, doi: 10.24874/PES.SI.24.02.010 

 

 275 

and improving model performance. A data preprocessing 

method called Z-score normalization, commonly called 

standardization, was used to convert numerical data to 

comply with a standard distribution. It includes dividing 

by the standard deviation after considering the data's 

mean. The values of attribute B are standardized under 

their standard deviation and mean using the 

normalization approach. The following Eq. (1) converts 

a value of B to𝑏̂: 

 

𝑏̂ =
𝑏−𝜇(𝑏)

𝜕(𝑏)
    (1) 

 

Where 𝜕(𝑏) reflects the properties′ standard deviation 

𝐵, &𝜇(𝑏) shows the average value. 

The method works well in stationary environments 

because B's minimum and maximum values are known. 

It struggles with non-stationary time series since their 

standard deviation and mean change with time. 

 

2.3 Feature extraction using Principal 

component analysis (PCA) 
 

To extract features and forecast the mechanical 

properties of alumina composites, it was done using 

principal component analysis (PCA). By lowering the 

dimensionality of the data while maintaining crucial 

information, this method aids in enhancing our 

comprehension of the mechanical characteristics of the 

material. PCA is a statistical method that uses data to 

create a model. It takes a group of variables that are 

related to each other and transforms them into a least 

number of innovative parameters that are non-related to 

each other. These innovative parameters retain a 

significant amount of the actual data's information. Let 

𝑊 is the input data, where all column represents a 

sequence of m-dimensional inputs. Furthermore, it is 

important to note that the mean of each function in the 

set of values is zero (𝐸(𝑊)  =  0). A data matrix in its 

original form consists of 𝑚 samples and 𝑛 variables, 

which can be represented as following Eq. (2): 

 

𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑚]𝑆 = (

𝑤11 ⋯ 𝑤1𝑛

⋮ ⋱ ⋮
𝑤𝑚1 ⋯ 𝑤𝑚𝑛

)     (2) 

 

Data on environmental parameters and performance 

criteria can be converted into a new occurrence space 

using Principal Component Analysis (PCA), which 

preserves as much of the original data as is practical. To 

do this, the directions with the most variance in the 

input information sets are found and they are predicted 

into a new subspace with the same or fewer extent than 

the original space. 

 

Therefore, an orthonormal transformation 𝑌 can be 

employed to transfer𝑊 to a novel space 𝑆 in the 

following Eq. (3): 

 

𝑆 = 𝑌𝑊                                         (3) 

The orthonormal vectors that constitute the S-matrix of 

values are obtained through a linear mixture of 

components from the W-matrix. This combination 

describes the relationship between the samples. The 

𝑆matrix of covariance is defined as Eq. (4): 

 

𝐷𝑆 = 𝑌𝐷𝑤𝑌𝑆   (4) 

 

The variable 𝐷𝑤 represents the matrix of covariance for 

the variable𝑊. 

 

The weighting matrices 𝑌 can be obtained by solving 

the eigenvalue Eq. (5): 

 

(𝐷𝑠 − 𝜆𝐽)𝑓
𝑗

= 0   (5) 

 

The covariance matrix contains the bilateral co-variances 

between the several input variables. Subsequently, the 

eigenvectors and eigenvalues for the matrix of covariance 

are decomposed (as shown in Eq. (5). The resulting 

eigenvectors represent the new orthogonal elements, 

referred to as “principal components, with their magnitude 

determined by the related Eigen values”. After arranging 

the eigenvalues and the related eigenvectors in a decreasing 

order, the PC will follow the same order. The first principal 

component will possess the highest variance, indicating the 

most significant information. The subsequent principal 

component will exhibit the second highest variance and so 

on. It is important to mention that the main components 

obtained are not associated with one another, regardless of 

the correlation between the input parameters.  

 

2.4 Predicting mechanical properties of AL 

alloy using for Bayesian- fine-tuned 

Adaptive Gated Recurrent Unit (B-AGRU)  
 

The Gated Recurrent Unit (GRU) neural network and 

Bayesian Optimization (BO) are used in the B-AGRU 

technique to forecast the mechanical characteristics of 

aluminium alloys. BO is used to tune hyper parameters. 

Algorithm 1 illustrate the B-AGRU 

 

2.4.1 Bayesian Optimization (BO) 
 

The Bayesian Optimization (BO) technique, utilized as a 

model-based hyper parameter-tuning strategy, leverages 

surrogate function for simulating the conditional 

probability of validation set performance with provided 

hyper parameters. Unlike grid / random searches, BO 

records earlier assessments, minimizing unnecessary 

calculations for unfavorable hyper parameters. The 

acquisition function chooses promising hyper parameters 

for the next iteration, enhancing tuning effectiveness in a 

shorter assessment time. The proposed model incorporates 

BO algorithm techniques into the dynamic ensemble 

module to achieve optimum hyper parameter tuning. The 

BO approach is made up of five primary components: 

hyper parameter distance, OF (forecasting error based 

enhanced validation data), acquisitions function, history of 
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assessments and surrogate function. The approach 

leverages "tree-based Parzen window estimation (TPE)" 

for the probabilistic estimation of the surrogate function 

and the anticipated improvement acts as the acquisition 

function A, as shown in Eq. (6). 

 

𝑎ℊ∗(𝑉) = ∫ (ℊ∗ − ℊ)𝑄(
ℊ∗

−∞
ℊ|𝑣)𝑑ℊ,        (6) 

 

Where𝑔 is the 𝜚ℱ and g is the 𝜚ℱ threshold, assuming 

the hyper parameter selection𝑣. 

 

2.4.2 Fine tuned Gated Recurrent Unit (GRU) 

 
The GRU is a “recurrent neural network (RNN)” that is an 

expanded version of “long short-term memory (LSTM)” 

unit. The GRU is a simplified model with two gate 

functions: the update gate, which determines how much 

previous information is preserved and the reset gate, which 

commands the integration of past information with the 

current input. This is in contrast to the LSTM's Input gate, 

forgetting gate, & output gate are the three gate functions.  

 

The formula for calculation at time 𝑡 is as following Eq. 

(7-10). 

 

𝑟𝑡 = 𝜎𝑠𝑖𝑔 (𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)     (7) 

 

𝑧𝑡 = 𝜎𝑠𝑖𝑔 (𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1)     (8) 

 

ℎ̃ = ∅𝑡𝑎𝑛ℎ(𝑧𝑡 = 𝜎𝑠𝑖𝑔 (𝑊ℎ𝑥𝑡 + 𝑟𝑡°𝑈ℎℎ𝑡−1)    (9) 

 

ℎ𝑡 = (1 − 𝑧𝑡)°ℎ𝑡−1 + 𝑧𝑡°ℎ̃𝑡    (10) 

 

The current hidden node's candidate value is represented 

by ℎ̃𝑡in the formula above, while the activating value of 

the hidden node's output is represented byℎ𝑡. The reset 

gate is represented by𝑟𝑡, while the update gate is by𝑧𝑡. 

°Denotes the multiplier element-wise. The activation 

functions 𝜎𝑠𝑖𝑔𝜑
𝑡𝑎𝑛ℎ

are responsible for activating control 

gates and candidate states, respectively. The 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 

and 𝑡𝑎𝑛ℎ functions' expressions are Eq. (11-12):  

 

𝑠𝑖𝑔(𝑥) = (1 + 𝑒𝑥)−1   (11) 

 

tanh(𝑥) = 2∗ 𝑠𝑖𝑔(𝑥) − 1   (12) 

 

This study employs an enhanced GRU model to 

enhance the precision of wind power predictions, 

aiming to achieve superior prediction accuracy. 

Algorithm 1 illustrates the GRU. 

 

The input parameters are represented by X and the 

analyses of alumina alloys mechanical properties were 

determined by Y. The following represents a 

representation of the hybrid Eq. (13): 

 

𝑦 = 𝑓ℎ𝑦𝑏𝑟𝑖𝑑(𝑥)    (13) 

Where, a function called 𝑓
ℎ𝑦𝑏𝑟𝑖𝑑

 combines the Gated 

Recurrent Unit (GRU) and the outputs of Bayesian 

Optimization (BO). The goal is to increase forecast 

accuracy by utilizing the advantages of both methods. 

The GRU model's features or hyper parameters might be 

optimized using the BO as one potential strategy. 

Whereas the GRU detects sequential relationships in the 

data, the BO model learns the mapping from input 

parameters to desired attributes. 

 

The hybrid Eq. (14) is shown in the following simplified 

form: 

 

𝑦 = 𝐺𝑅𝑈(𝑋; 𝜃𝐺𝑅𝑈) + 𝐵𝑂(𝑋; 𝜃𝐵𝑂)     (14) 

 

• The GRU model's output, represented 

as𝐺𝑅𝑈(𝑋; 𝜃𝐺𝑅𝑈), has parameters𝜃𝐺𝑅𝑈. 

• The𝐵𝑂 model's output, represented as𝐵𝑂(𝑋; 𝜃𝐵𝑂), 

has parameters𝜃𝐵𝑂. 

It is possible to tune the𝜃𝐺𝑅𝑈 and 𝜃𝐵𝑂model parameters 

during training. With the assistance of the Bayesian 

technique, this hybrid strategy aims to represent both 

the sequential dependencies in the data and the 

optimization of the parameters. The specifics of our data 

and the objectives of the prediction model will 

determine how the implementation is performed out. 

 

Algorithm 1: B-AGRU 

Import necessary libraries 

from agru model import create agrumodel  # Assume 

you have a function to create AGRU model 

from Bayesian optimization import optimize with BO  

Assume you have a function for Bayesian Optimization 

Sample data (replace with your actual data) 

X train, y train = generate training data() 

Step 1: Bayesian Optimization to optimize AGRU 

hyperparameters 

Best params = optimize with bo(X train, y train) 

Step 2: Train AGRU model with optimized 

hyperparameters 

Agru model = create agrumodel(best params) 

agru model. Fit(X train, y train) 

Step 3: Make predictions using the trained AGRU 

model 

Agru predictions = agru model. Predict(X test) 

Step 4: Use Bayesian Optimization to further refine 

predictions 

Refined params = optimize with bo(X test, agru 

predictions) 

Step 5: Train final AGRU model with refined 

hyperparameters 

Final agru model = create agrumodel(refined params) 

final agru model. Fit(X train, y train) 

Step 6: Make final predictions 

Final predictions = final agru model. Predict(X test) 

Evaluate the final predictions 

evaluate(final predictions, true values) 
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3. PERFORMANCE EVALUATION AND 

DISCUSSION  

 
The mechanical properties of Alumina composites are 

predicted by implementing a B-AGRU in Python. 

Key material attributes are included in the dataset. 

Tensor Flow or PyTorch are used in the Python code 

to build GRU. An adequate Graphics Processing Unit 

(GPU) and a minimum of 8GB RAM is needed for 

the experiment to educate the computer effectively. 

We analyze the proposed method metrics of 

performance: RMSE “(Root Mean Squared Error)”, 

MAE “(Mean Absolute Error)” and R Squared. 

Comparisons of our proposed method are deep neural 

network (DNN) (Yu et al., 2021), support vector 

regression (SVR) (Yu et al., 2021) and shallow neural 

network (SNN) (Yu et al., 2021). 

 

Figure 2 shows a comparison of the B-AGRU 

algorithms predicted and real tensile strength values. 

The figure shows that the B-AGRU algorithm was 

able to produce a better fit between the points and 

the regression line. Just one of the 13 data points, 

which differ dramatically from the regression line, 

stands out as an outlier. The general data point 

alignment with the regression line highlights how 

well the algorithm predicts the tensile strength of 

aluminum alloys. 

 

 
Figure 2. B-AGRU-based Actual vs. Predicted tensile 

strength. 
 

An analysis of yield strength predictions provided by 

the B-AGRU algorithm is shown in Figure 3 

about actual values. Closer examination of the plot 

reveals that the residuals generated by the B-AGRU 

method better fit the data. To be more precise, the 

figure demonstrates that the B-AGRU method fits 

the regression line better when evaluating the yield 

strength, which suggests a higher correlation 

between the expected and actual values. 

 
Figure 3. B-AGRU-based Actual vs. Predicted Yield 

Strength. 

 

The “actual and predicted” hardness values for B-

AGRU are shown in Figure 4. Notably, five or so data 

points depart from the predicted fitting zone. Of them, 

three or out of the total of 13 points do not match the 

regression line, making them stand out. The outliers 

display a notable divergence from the regression line, 

indicating a noteworthy departure from the overall 

pattern seen in the other data points. 

 

 
Figure 4. B-GRU-based Actual vs. Predicted  

Hardness value. 
 

A statistic known as the RMSEestimates the mean 

variance between the results that were expected and 

those that weren't. the mean difference between results 

as predicted and as observed. The value of square root 

of the average for the squared differences between 

expected and actual values is calculated. A lower RMSE 

suggests that the method B-AGRU predictions are more 

accurate. Figure 5 and Table 2 illustrate the RMSE 

values. Compared to existing DNN-22, SNN-25 and 

SVR-28, our proposed method B-AGRU-20 was lower. 

Compared to existing approaches, the B-AGRU 

improved the predicting alumina composites' 

mechanical characteristics. 
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Figure 5. Outcome of RMSE. 

 

Table 2. Values of RMSE. 

Method RMSE 

DNN 22 

SNN 25 

SVR 28 

B-AGRU [Proposed] 20 

 

MAE is yet another statistic used to assess the 

prediction model's accuracy. The percentage 

differences between the expected and actual values 

are averaged. Like RMSE, MAE evaluates the extent 

to which the B-AGRU predictions correspond to the 

actual values. It is frequently used in conjunction 

with other assessment metrics to evaluate the B-

AGRU overall performance. Figure 6 and Table 3 

depict the response time values. Our suggested 

approach was lesser than the existing method such as 

DNN-13, SNN-15 and SVR 14. The B-AGRU-10 

enhanced in predicting alumina composites' 

mechanical characteristics when compared to existing 

methods. 

 

 
Figure 6. Outcome of MAE. 

 

Table 3. Values of MAE. 

Method MAE 

DNN 13 

SNN 15 

SVR 14 

B-AGRU [Proposed] 10 

 

R-squared reflects the fraction of the variation in the 

dependent variable that is predicted by the independent 

variables. A higher R-squared value indicates a more 

accurate match. R-squared is computed as the explained 

variance divided by the total variance. Our proposed 

method is higher B-AGRU- 97 than the existing 

methods DNN-96, SNN-94 and SVR-93 as shown in 

Figure 7 and Table 4. It shows that our proposed 

method B-AGRU successfully predicts alumina 

composites' mechanical characteristics. 

 

 
Figure 7. Outcome the R2. 

 

Table 4. Values of R2. 

Method 𝐑𝟐 

DNN 96 

SNN 94 

SVR 93 

B-AGRU [Proposed] 97 

 

4. CONCLUSION  
 

The article offers a novel strategy for overcoming the 

difficult task of acquiring the properties of aluminium 

alloys required for component production. The study 

presents a very successful prediction model for 

mechanical properties including tensile strength, 

hardness and yield strength by using machine learning, 

most especially B-AGRU. The B-AGRU technique 

performs better at predictions because it uses data for 

training and testing, along with a careful preparation 

procedure that includes cleaning and Z-score 

normalization. The effectiveness of the technique is 

further improved by including Principal Component 

Analysis (PCA) for feature extraction. Metrics such as 
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RMSE-20%, MAE-10% and R-squared-97% show that 

performs better than conventional approaches. This 

represents not only a major breakthrough in materials 

science but also advances the more general objectives of 

sustainability and efficiency in alloy development and 

production processes. With different reinforcing 

materials and production methods, alumina composites 

might be intricate. Because these composites are so 

different, it becomes difficult to predict their mechanical 

properties. Higher-level insights into the behavior of the 

material can be obtained by using sophisticated 

characterization methods, such as imaging and in-situ 

testing. Predictive model improvement and refinement 

are possible with this data. 
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