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A B S T R A C T 

The difficulty of fault identification as well as categorization in industrial 

rotating machinery is fixed by this study, which introduces a revolutionary 

Dandelion Optimized CatBoost (DO-CB) technique. The suggested framework 

makes use of the CB algorithm, which is enhanced by the DO method. The 

first step in the suggested DO-CB approach is gathering sensor data from 

rotating gear to record different operational settings. To ensure robustness, 

the recommended approach is developed on identified data and includes a 

variety of fault scenarios. Additionally, the Python tool used for identifying 

faults and classification is the basis for the implementation of the DO-CB 

approach. The experimental findings show how well the suggested method 

works to precisely identify and classify problems in industrial rotating gear. 

In comparison to benchmark defect detection techniques, the suggested DO-

CB approach performs better, demonstrating its capacity to manage intricate 

patterns and fluctuations in the data. 
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1. INTRODUCTION 
 

A crucial aspect of predictive maintenance and 

industrial automation involves the recognizing and 

categorizing defects in rotating gears used in various 

industries. The maintenance and dependability of 

rotating machinery become increasingly critical as 

companies expand and rely more on complex 

equipment for smooth operations. This field of study 

addresses challenges in locating and classifying 

issues in equipment, including generators, turbines 

and motors integral components of numerous 

industrial processes (Li, X., et al., 2020). Fault 

detection is crucial for rotating machinery as it can 

prevent downtime, avert catastrophic failures and 

enhance overall productivity. Failures in rotating 

machinery can have extensive consequences in the 

complex realm of industrial operations, leading to 

compromised safety, increased maintenance costs 

and production delays. 
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Consequently, for industries to achieve operational 

excellence, it is imperative to develop and implement 

new defect detection and classification systems (Li, Z., 

et al., 2019). Early identification of errors before they 

escalate is a fundamental objective in this field. 

Addressing issues in their initial stages not only 

mitigates the financial impact of unplanned breakdowns 

but also extends the lifespan of machinery (Surendran, 

R., et al., 2022). The landscape of defect detection has 

undergone significant transformation with the advent of 

sensor technology and the Internet of Things (IoT). Live 

surveillance and collecting of data through sensors 

integrated into rotating machinery enable continuous 

evaluation of equipment health, facilitating proactive 

maintenance techniques (Zhang, W., et al., 2019). 

Numerous signals and data associated with rotating 

machinery undergo analysis during the defect detection 

process.  

 

Classifying defects in rotating equipment is an equally 

vital undertaking that goes beyond simple identification. 

The process involves categorizing the characteristics 

and intensity of defects to enable focused reactions 

(Senanayaka, J.S.L., et al., 2017). Fault classification 

empowers maintenance teams to prioritize issues based 

on their potential impact on machinery performance and 

overall operational integrity. Organizations can manage 

resources by distinguishing between minor imbalances 

and significant structural breakdowns. This enables 

them to address the most urgent issues promptly while 

preparing for long-term maintenance and improvements 

(Chen, S., et al., 2020). Fault detection is the systematic 

monitoring of machinery to identify any abnormalities 

or deviations from the expected level of performance. 

Within the domain of industrial rotating equipment, 

these anomalies can manifest as vibrations, unusual 

noises, changes in temperature, or fluctuations in other 

measurable factors. Prompt identification of these 

irregularities is crucial to prevent minor issues from 

evolving into significant malfunctions, which can result 

in costly downtime and maintenance. Furthermore, 

proactive defect detection aligns with the primary goal 

of predictive maintenance, enabling organizations to 

plan repairs and replacements proactively, thereby 

minimizing disruptions to production operations. 

 

Identifying and classifying defects is an additional aspect 

of this discipline that enhances the precision of 

maintenance procedures. Recognizing that not every 

mistake has identical ramifications or necessitates identical 

remedies is crucial. By classifying defects based on their 

nature, severity and potential impact, industrial operators 

can prioritize maintenance operations and allocate 

resources effectively (Xia, M., et al., (2017)). For example, 

distinguishing between misalignment, imbalance and 

bearing wear in a rotating machine allows for targeted 

treatments that optimize the use of time and resources. 

 

 

The process of integrating fault detection and 

classification systems into the broader industrial 

environment is intricate. It involves seamlessly 

incorporating analytics platforms, data collection 

systems and sensors with existing supervisory control 

and data acquisition (SCADA) systems (Choudhary, A., 

et al., 2021). Ensuring interoperability with enterprise 

asset management (EAM) systems is crucial in 

transforming the knowledge derived from problem 

detection into actionable maintenance plans. This 

contributes to the development of a comprehensive 

industrial asset management strategy (Li, Y., et al., 

2020). Identifying and classifying problems in industrial 

rotating gear presents several challenges and 

constraints. The complexity arises from the diversity of 

machinery types and operating conditions, as different 

machines can exhibit distinct defect signs. Fault 

identification becomes even more intricate due to 

inherent fluctuations in operational factors, such as 

speed, load and climatic variables. Limitations arise 

from the availability and quality of sensor data, as 

sparse or insufficient data can compromise the accuracy 

of defect detection systems. 

 

Souza, R.M., et al., (2021) investigated unsupervised 

data, which was straightforward to gather. It employed a 

three-stage training method involving representation 

grouping and enhanced supervised learning. The 

validation was conducted on two datasets related to 

rotating devices and the results indicated that the 

proposed approach demonstrated promising diagnostic 

performance. The utility of the suggested method in 

addressing unsupervised learning fault diagnostic 

problems was thus confirmed. 

 

Tang, S., et al., (2019) presented the utilization of a 

“predictive maintenance model called PdM-CNN 

(“Convolutional Neural Network”). The model utilized 

data from a single vibration sensor placed on the motor-

drive end bearing, a configuration found in the industry. 

They demonstrated the model's capability to detect and 

categorize defects in industrial rotating gear. 

 

Souza, R.M., et al., (2021) proposed intelligent defect 

detection based on deep learning (DL), which has 

captured the interest of scholars. DL offered automated 

feature learning and fault categorization, prompting an 

examination of DL and DL-based intelligent fault 

diagnostic systems. The techniques of DL-based fault 

diagnostics for rotating machinery, particularly 

bearings, gearboxes and pumps, were outlined and 

explored. Cross-validation findings indicated that the 

suggested approach exhibited high diagnostic 

accuracy. Ding, A., et al., (2019) introduced deep 

reinforcement learning as an intelligent diagnosis 

technique aimed at addressing the limitations of 

discussed diagnostic approaches. The proposed 

process underwent validation using datasets from two 

types of rotating machinery: hydraulic pumps and 

rolling bearings. These datasets consisted of numerous 



Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 251-260, doi: 10.24874/PES.SI.24.02.008 

 

253 

raw vibration signals recorded under various operating 

conditions and health states. The suggested approach 

demonstrated its capability to yield outstanding 

outcomes. 

Brito, L.C., et al., (2022) proposed the Shapley 

Additive Explanations (SHAP) method for 

diagnosing and detecting problems in spinning 

equipment. The approach consisted of three 

components: defect diagnosis, defect detection and 

feature extraction (Zhang, Y., et al., (2021)). 

Anomaly detection methods were employed to 

confirm the presence of faults independently. The 

models demonstrated superior outcomes in terms of 

defect diagnosis and detection. Sobie, C., et al., 

(2018) investigated issues related to race roller 

bearings defects by producing data for training from 

superior models of roller bearing movements. The 

data was employed to train machine learning (ML) 

algorithms, which were tested against four 

experimental datasets. Various ML strategies were 

evaluated, ranging from established statistics-based 

feature algorithms to CNN. The technique 

outperformed a statistical feature-based classifier in 

terms of classification accuracy. 

 

Luwei, K.C., et al., (2018) proposed an artificial neural 

network (ANN) classification method that could enable 

autonomous fault classification in rotating machinery. 

Vibration-based condition monitoring (VCM) 

techniques were highly advanced, as they could assign 

unique fault diagnostic signatures to specific rotating 

machine faults. VCM approaches were widely 

employed in practice for the detection and 

categorization of issues in rotating machines. The 

integrated approach of techniques was suggested; due to 

its adaptability to new features and flaws. Li, Y.,  et al., 

(2020) presented a DL algorithm for detecting faults in 

rotating equipment. Acknowledging the challenge of 

obtaining labeled data in real-world sectors, the research 

presented data augmentation approaches to synthesize 

more samples suitable for training the model. The 

suggested technique demonstrated high diagnostic 

accuracy even with a limited original training dataset, 

showcasing outstanding performance. 

 

Carino, J.A., et al., (2018) presented ensemble 

technique for detecting and changing classification. The 

approach was divided into four major stages: feature 

evaluation and reduction, recognition of unexpected 

events, diagnostics with e-Class Evolving Classifiers 

and training for model improvement. The proposed 

approach for identifying faults was evaluated and 

compared to a traditional method for identifying faults. 

The models' precision was monitored separately. 

 

Wu, C., et al., (2019) discussed the development of a 

CNN that could learn characteristics directly from the 

original vibration signals and identify defects. The 

suggested method's efficacy was proven using data from 

the Prognostics and Health Management (PHM) gear 

challenge as well as testing on a planetary gearbox. 

 

Chen, Z., et al., (2019) introduced a “Transferable 

Convolutional Neural Network (TCNN)” to enhance 

target task learning. Leveraging extensive source task 

datasets, a single-dimensional CNN was constructed 

and trained. The proposed solution capitalized on the 

learning capabilities of a DL Model but also 

incorporated past information from the source task. 

The approach was demonstrated to be stable and 

resilient, leading to superior outcomes. Luo et al., 

(2018), proposed a Computer Numerical Control 

(CNC) technique for early defect identification under 

time-varying circumstances. A DL model was 

constructed to select the impulse responses from the 

vibration that automatically signals over a lengthy 

288-day period. The findings demonstrated the 

method's ability to reflect the machine tool's state of 

condition accurately. 

 

Li, Z., et al., (2019) presented a DL-driven approach for 

degradation assessment and fault categorization was 

presented. With multiple hidden layers, a Deep Neural 

Network (DNN) learned multiple nonlinear 

transformations with high complexity compared to 

traditional data-driven methods, enabling the identification 

of discriminative information and capturing significant 

variations from industrial data. Based on the data gleaned 

from vibration signals in mechanical equipment, the 

numerical results demonstrated that used approaches were 

capable of classifying failures. 

 

Dineva, A., et al., (2019) proposed a unique multi-label 

classification technique called k-nearest neighbors (KNN) 

intended to diagnose several faults and assess the severity 

of each problem in the presence of noise. Comparisons 

were made between the performance of several multi-label 

classification models and with most of the vibration data 

labeled, the prediction accuracy was quite good. 

 

Kolar, D., et al., (2020) introduced a model based on 

CNN for defect diagnostics in rotary equipment using 

DL techniques. By employing the CNN-trained 

model, the system could classify data into one of the 

four classes, enabling it to function and deliver 

precise diagnostic outcomes. 

 

González-Muñiz, A., et al., (2020) introduced a 

method for monitoring the state and detecting faults 

in rotating machinery using a one-dimensional deep 

convolutional neural network (1D DCNN). The 

developed system was intended to use on a rotating 

apparatus with a total of seven potential operational 

conditions. The findings suggested that their 

Convolutional Neural Network (CNN) model had a 

level of accuracy that was comparable to that of 

traditional classifiers. 
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Gong, W., et al., (2019) introduced a new approach 

called the enhanced “convolutional neural network-

support vector machine (CNN-SVM)” technique. The 

approach improved the conventional CNN architecture 

by incorporating global average pooling and SVM. The 

findings validated the superiority of the suggested 

technique over other established intelligent methods, 

including SVM, KNN, “Back-propagation artificial 

neural network (BPNN)”, “Deep back-propagation 

network (DBPN)” and classic CNN. 

Khan, M.A., et al., (2022) proposed fault 

identification and diagnosis (FDD) methods for 

anticipating a variety of bearing problems that occurs 

in rotating machinery. Traditional procedures, 

statistical techniques and artificial intelligence-based 

architectures, such as ML and DL, were explored for 

the purpose of identifying defects in rotating 

electrical machines. Furthermore, external resources 

like DL algorithms and variable frequency devices 

(VFD) were suggested to obtain precise outcomes. Li, 

C., et al., (2016) introduced deep statistical feature 

learning (DSFL) as a method for analyzing vibration 

data in rotating machinery. The proposed 

methodology was utilized as a sophisticated 

statistical technique for acquiring profound 

knowledge of features in the gearbox and bearing 

systems. The suggested strategy is evaluated in 

comparison to conventional approaches such as 

support vector machines and Gaussian-Bernoulli 

restricted Boltzmann machines (GRBM). The results 

indicated that deep statistical feature learning had 

higher classification accuracy for fault patterns 

compared to other models. 

 

Mehta, A., et al., (2021) discussed the application of 

Infrared Thermography (IRT) in diagnosing bearing 

faults. The thermal picture underwent a “two-

dimensional discrete wavelet transform (2D-DWT)” 

for breakdown. “Principal Component Analysis 

(PCA)” was used to decrease the dimensionality of 

characteristics that are extracted. The appropriate 

selection of these parameters led to improved 

outcomes. 

 

Wu, C., et al., (2021) presented a hybrid 

classification auto encoder (HCAE) model that 

employed a softmax classifier to diagnose the health 

state using the encoded characteristics obtained from 

the autoencoder. The validity of the suggested 

approach was confirmed by applying it to a dataset of 

motor bearings and an industrial hydro turbine 

dataset. The empirical findings demonstrated that 

their system could achieve significantly high 

diagnostic accuracies with a minimal proportion of 

labeled data. 

 

In this paper, we introduce a novel, Dandelion 

Optimized CatBoost to improve the reliability as well 

as efficiency of fault detection devices, contributing 

to the overall operational stability and maintenance 

optimization of industrial rotational machinery. 

 

1.1 Contribution 
 

• The collected CWRU dataset is a great asset for 

scholars and professionals engaged in the 

development and evaluation of algorithms for the 

early identification of malfunctions in rotating 

machinery. 

• The Dandelion Optimisation approach improves 

the process of discovering as well as classifying 

faults, enabling prompt and targeted maintenance 

actions. 

• The CatBoost algorithm is designed to handle 

category data and achieve excellent performance 

in machine learning tasks. It enables the effective 

analysis of intricate data patterns in machinery 

operations.   

• The DO-CB model identifies and categorizes 

defects in rotating machinery, providing a more 

dependable and effective solution.  

 

The remaining part of this article is categorised into the 

subsequent sections: Part 2, Methodology; Part 3, Result 

and Part 4, Conclusion. 

 
2. RESEARCH METHODS 
 

In this paper, we collected a CWRU dataset that is 

used to identify and classify different types of defects 

in industrial spinning equipment. The Dandelion 

Optimized CatBoost (DO-CB) strategy is presented 

as an innovative and potentially more effective 

technique. This approach enhances the predictive 

maintenance capabilities of rotational machinery in 

industrial settings, thereby minimizing downtime, 

reducing maintenance costs and improving overall 

operational efficiency. 

 

2.1 Dataset 
 

The CWRU dataset is a comprehensive and typical 

collection of bearing problems. Its purpose is to 

verify and enhance motor state assessment methods. 

An experimental setup was conducted using a 2-

horsepower Reliance motor. The facility was 

operated at four different loads throughout the 

experiments: 0 hp, 1 hp, 2 hp and 3 hp. The sampling 

frequency utilized was 12 kHz. The CWRU dataset's 

enduring fault class comprises “inner race defects, 

ball defects and outer race defects." Every fault class 

is characterized by two distinct diameters, namely 8 

mils and 16 mils. Hence, the CWRU dataset is 

categorized into seven classes, consisting of one 

normal class and six fault classes, each representing 

two different fault diameters for a total of three fault 

classes. Without rearranging the information, we 



Proceedings on Engineering Sciences, Vol. 06, No. 1 (2024) 251-260, doi: 10.24874/PES.SI.24.02.008 

 

255 

utilized 51,200 points of sampling to represent 

distinct bearing faults. These points were divided into 

100 samples, with each sample including 512 

sampling points for training purposes. The rest of the 

12,800 points of sampling were used for testing, 

divided into 25 pieces from each load. There were 

400 different samples allocated 100 samples for 

training, allocated for testing in each fault class. 

Table 1 contains specific information about the 

dataset (Wei, H., et al., (2021)). 

 

Table 1. The CWRU dataset fault classifications. 

Class payload Defect Diameter Error Situation Training Testing 

0 0 Not Applicable Operating Normally 400 100 

1 1 10 Misaligned shaft 400 100 

2 2 20 inequality 400 100 

3 3 30 Equipment Erosion 400 100 

4 1 15 alignment deviation 400 100 

5 2 25 Disparity 400 100 

6 3 35 Equipment Erosion 400 100 

 

2.2 Synergistic Fault Identification 
 

Dandelion Optimization, stimulated by the dispersal 

pattern of dandelion seeds, is employed in tandem with 

the CB algorithm for efficient fault identification and 

classification in industrial rotating machinery. This 

synergistic approach combines the robust gradient-

boosting capabilities of CB with the stochastic search 

methodology of Dandelion Optimization. 

 

2.2.1 Dandelion Optimization 
 

Dandelion Optimization can enhance the efficiency of 

feature selection and model parameter tuning, enabling 

the identification of abnormalities in rotational 

machinery. To investigate the behavior of dandelion 

seeds, a unique swarm intelligence system was 

developed and suggested as a solution for ongoing 

optimization issues. There are two subpopulations of 

dandelions in Dandelion Algorithm (DA) that can be 

seeded and those cannot. Distinct seeding techniques are 

employed for each subgroup. Meanwhile, conducting a 

subpopulation suitable for sowing is another method of 

seeding to prevent slipping into the local optimum. A 

dandelion scatters its seeds indiscriminately. One way to 

conceptualize dandelion seeding is as a search for the 

optimal in acertain vicinity around a point. The three 

steps involved in this process are as follows: 

 

When seeds are in the rising stage, they can locally float in 

communities or ascend spirally, influenced by eddies from 

above, depending on the weather. In space, as they descend 

during the falling stage, flying seeds alter their course. 

Seeds are planted in selected spots to facilitate sprouting 

during the landing stage as shown in Equation (1). 
 

𝐶𝑗 = 𝑟𝑎𝑛𝑑 × (𝑉 − 𝐾) + 𝐾              (1) 
 

Here 𝑗 represents an integer between 1 and the size of 

the population. 𝑑𝑖𝑚 Represents the dimension of the 

dandelion vector, 𝑟𝑎𝑛𝑑 denotes a pseudo-random value 

in the range of 0 to 1 and 𝐾 and 𝑉 are defined as follows 

in Equation (2-4):  

 

𝐾 = [11, … , 1𝑑𝑖𝑚], 𝑉 = [𝑣1, … , 𝑢𝑑𝑖𝑚]             (2) 

𝑓𝑏𝑒𝑠𝑡 = (𝑓(𝐶𝑗))                            (3) 

𝐶𝑒𝑙𝑖𝑡𝑒 = 𝐶𝑗                            (4) 

 

During the dispersion stage, dandelion seeds must attain a 

specific height to detach from their parent plant. The wind's 

direction and the air's humidity influence the height they 

reach. Climate and wind speed are the primary factors 

affecting dandelion seed distribution. Wind speed 

determines the range a seed can travel. Weather conditions 

impact dandelion growth in nearby and distant areas, 

determining whether seeds can disperse. Two types of 

weather are relevant here: 

 

Category 1: wind speed distributions are considered as 

lognormal distribution 𝑌~𝑁(𝑢, 𝜎2). Due to the even 

distribution of random values along the Y-axis, there's a 

higher chance for dandelion seeds to germinate and 

spread to distant places. In this case, exploration is 

prioritized by DO. Dandelion seeds disperse in various 

ways around the search area via the wind. Wind speed 

influences the height a dandelion seed attains. Stronger 

winds at higher altitudes result in seeds that are spread 

over a greater distance. The vortexes above the 

dandelion seeds continually shift due to wind speed, 

causing the seeds to ascend in a spiral pattern, as shown 

as follows in Equation (5-9): 

 

𝐶𝑠+1 = 𝐶𝑠 + 𝛼 ∗ 𝑢𝑤 ∗ 𝑢𝑧 ∗𝑙𝑛 𝑙𝑛 𝛶 ∗ (𝐶𝑡 − 𝐶𝑠)     (5) 

 

𝐶𝑡 = 𝑟𝑎𝑛𝑑 (1, 𝐷𝑖𝑚) ∗ (𝑉 − 𝐾) + 𝐾  (6) 

 

𝑙𝑛 𝑙𝑛 𝛶 =  {
1

𝑧√2𝜋
𝑒𝑥𝑝 𝑒𝑥𝑝 [−

1

2𝜎2
(𝑙𝑛𝑧)2]    𝑧 ≥

0  0                 𝑧 < 0                                        (7) 

 

𝛼 = 𝑟𝑎𝑛𝑑 () ∗ (
1

𝑆2 𝑠2 −
2

𝑆
𝑠 + 1)                (8) 
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𝑞 =
1

𝑓𝜃 ;   𝑢𝑤 = 𝑞 ∗𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃; 𝑢𝑧 = 𝑞 ∗𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃           

(9) 

 

Where, 𝜃 falls within the range of [−π, π]. Category 2: 

On a wet day, dandelion seeds cannot rise in alignment 

with the wind because of things like humidity and air 

resistance. In the specific context where dandelion seeds 

are utilized, the corresponding mathematical Equations 

(10-11), 

 

𝐶𝑠+1 = 𝐶𝑠 ∗ 𝑙     (10) 

 

𝑙 = 1 − 𝑟𝑎𝑛𝑑 ( ) ∗ 𝑟    (11) 

 

𝑟 = 𝑟𝑎𝑛𝑑 ( ) ∗ (
1

𝑆2−2𝑆+1
𝑠2 − 

1

𝑆2−2𝑆+1
𝑠 + 1 +  

1

𝑆2−2𝑆+1
)  

(12) 

 

The mathematical equation for the ascent of dandelion 

seeds is as follows in Equation (13) 

 

𝑊𝑠+1 =  {𝐶𝑠 + 𝛼 ∗ 𝑢𝑤 ∗ 𝑢𝑧 ∗ 𝑙𝑛 𝑙𝑛 𝛶 ∗ (𝐶𝑡 −
𝐶𝑠)   𝑖𝑓 𝑟𝑎𝑛𝑑 𝑛 < 1.5 𝐶𝑠 ∗ 𝑙  𝑒𝑙𝑠𝑒               (13) 

 

Following the ascending stage, the average position data 

depicts the descent of the dandelion, promoting 

population growth and the emergence of potential 

communities. The corresponding mathematical formula 

is presented below in Equation (14) 

 

𝐶𝑠+1 = 𝐶𝑠 − 𝛼 ∗ 𝛽𝑠 ∗ (𝐶𝑚𝑒𝑎𝑛−𝑠 − 𝛼 ∗ 𝛽𝑠 ∗ 𝐶𝑠)           

(14) 

 

The mathematical formulation for the average location 

of the population in the 𝑗𝑡ℎ iteration represented 

by𝐶𝑚𝑒𝑎𝑛−𝑠, is as follows in Equation (15) 

 

𝐶𝑚𝑒𝑎𝑛−𝑠 =
1

𝑝𝑜𝑝
∑𝑝𝑜𝑝

𝑗=1 𝐶𝑗   (15) 

 

This part of the DO technique focuses on exploitation. 

The dandelion seed selects its landing location 

randomly, drawing from its experiences in the preceding 

two phases. As the number of iterations increases, the 

algorithm aims to identify the best option. The optimal 

placement is the approximate location where dandelion 

seeds are most likely to germinate successfully. To 

converge precisely to the global optimum, search agents 

in their local communities leverage the specialist 

knowledge of the existing elite. The evolution of the 

population will eventually unveil the ideal global 

solution. This behavior manifests in the following ways 

in Equation (16) 

 

𝐶𝑠+1 = 𝐶𝑒𝑙𝑖𝑡𝑒 + 𝑙𝑒𝑣𝑦 (𝛿) ∗ 𝛼 ∗ (𝐷𝑒𝑙𝑖𝑡𝑒 − 𝐶𝑠 ∗ 𝜕)        

(16) 

 

In the fifth iteration, the dandelion seed was planted in 

the optimal spot, symbolized by 𝐷𝑒𝑙𝑖𝑡𝑒 . Levy(𝛿), 

representing the Levy flight function, is computed as 

follows in Equation (17-19) 

 

𝑙𝑒𝑣𝑦 (𝛿) = 𝑡 ∗
𝑥∗𝜎

𝑠

1
𝛽

   (17) 

 

A random number between 0 and 2 is denoted by 𝛽 and 

in this work, 𝛽 is set to 1.25. The variables 𝑥 and 𝑠 are 

random numbers within the range [0, 1], Whereas 𝑠 is a 

constant value at 0.01. The mathematical equation for σ 

is, 

𝜎 = (
𝛤(1+𝛽)∗𝑠𝑖𝑛𝑠𝑖𝑛 (

𝜋𝛽

2
) 

𝛤(
1+𝛽

2
)∗𝛽∗2((𝛽−12))

)   (18) 

 

𝜕 =
2𝑠

𝑆
     (19) 

 

The algorithm specifies the upper limit for the amount 

of repetitions to terminate the optimization procedure. 

 

2.2.1 2.2.2 CatBoost algorithm 
 

CatBoost is capable of processing intricate data from 

sensors on machines, making it possible to see minute 

anomalies that might be signs of possible problems. A 

novel ensemble technique utilizing gradient boosting 

with decision trees is called CB. CatBoost's standard 

model utilizes a symmetric tree, an application of 

increasing. The sequential iteration of a set of classifiers 

produces a robust classifier. In comparison to 

conventional boosting approaches, CB employs an 

enhanced algorithm for computing leaf values and it 

utilizes a unique method to handle categorical 

information. CB leverages integrated category features, 

enabling it to exploit feature linkages and enhance the 

feature dimension. To reduce the present iteration's 

function of loss, CatBoost's𝑙 iteration seeks to identify 

𝑔𝑙 that can be computed using equation (20).  
 

𝑔𝑙 −𝑎𝑟𝑔 𝑎𝑟𝑔 
1

𝑛
  ∑𝑛

𝑙=1 (−𝑒𝑙(𝑤𝑙 , 𝑧𝑙) − 𝑔(𝑤𝑙))
2
        (20) 

 

Where 𝑒𝑙(𝑤, 𝑧) =
𝜕𝐾(𝑧,𝐸𝑙−1(𝑤))

𝜕𝐸𝑙−1(𝑤)
is the estimate of the 

gradient. 
 

Where 𝐾(𝑧, 𝐸𝑙−1(𝑤))is the loss function and the current 

learner created by the finished k-1 step iteration𝐸𝑙−1(𝑤), 

the process involves sorting the samples from the initial 

collection of pieces based on an unsystematic arrangement, 

denoted as 𝜎 = {𝜎0, 𝜎1, … , 𝜎𝑚}. Then,  𝑚 distinct support 

models, denoted as 𝑀1,  𝑀2 … 𝑀𝑛 is initialized to achieve 

an impartial estimation of the gradient using the ordered 

boosting approach. For each sample 𝑥𝑖obtained from a 

training set without replacement, a unique model needs to 

be trained. The gradient estimate concerning sample 𝑥𝑖 is 

obtained using 𝑀𝑖 and the basic learner is trained using this 

gradient estimate. Equation (21) illustrates the final result, 

representing the strong learner of this iteration. 
 

𝐸𝑙(𝑤) = 𝐸𝑙−1(𝑤) + 𝑔𝑙   (21) 
 

Comparatively speaking, the objective of the 𝑙𝑡ℎ 

iteration is to determine𝑔𝑙, following which the aim is to 
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minimize and decrease the training data's objective 

function. This entails reducing the model's inaccuracy of 

prediction in the training set to obtain the CB system. 

 

2.2.3 Dandelion Optimized CatBoost (DO-CB) 
 

An innovative method for defect identification and 

classification in industrial rotating machinery involves 

the combination of Dandelion Optimization and 

CatBoost. Taking inspiration from the natural foraging 

behaviour of dandelions, Dandelion Optimization 

optimizes model parameters by improving the 

algorithm's exploration-exploitation balance. This 

hybrid model is further enhanced by CB, a robust 

gradient boosting method and performs well in handling 

intricate connections and categorical characteristics in 

data related to industrial machinery. The integration of 

these methods improves fault detection efficiency along 

with accuracy, enabling the swift identification and 

classification of issues in rotating machinery. This 

creative combination provides a robust approach for 

preserving the reliability and performance of industrial 

systems. Algorithm 1 shows the pseudo code for DO-

CB. 

 

Algorithm 1:  Pseudocode for Dandelion Optimized 

CatBoost 

Initialize Dandelion Optimization parameters 

Initialize CatBoost hyperparameters 

while not termination_condition: 

    Update Dandelion positions based on fitness 

    Apply CatBoost training on Dandelion positions 

    Explore neighborhood and exchange information 

    Apply local search and update positions 

    Update Dandelion wind parameters 

    Evaluate CatBoost performance and fitness 

    Maintain diversity in Dandelion population 

end while 

 

3.  RESULTS AND DISCUSSION 
 

The recommended task was executed with “four RTX 

2080Ti graphics cards and PyTorch 1.5.1” was 

employed for software. These datasets served as 

verification to assess the models' functionality. 

 

The performance evaluation of the proposed approach 

involves assessing it in terms of Root Mean Squared 

Error (RMSE), Mean Absolute Percentage Error 

(MAPE) as well as Mean Absolute Error (MAE) and 

conducting a comparative analysis with other existing 

methods, including Deep Belief Network (DBN) (Shao, 

H., et al., 2018) and SVR (Shao,H., et al., 2018). 

 

The loss metric is used to quantify prediction errors during 

the training and validation phases of fault detection and 

categorization for industrial rotational machinery. The goal 

is to minimize the disparity between predicted and actual 

values. The training graph monitors these metrics across 

epochs, aiming for high accuracy and low loss. Figure 1 

depicts the loss validation of the proposed method. 

 

 
Figure 1. DO-CB loss validation on the CWRU dataset 

during training 

 

RMSE quantifies the average amount of discrepancies 

between expected and actual data. The calculation involves 

finding the square root of the average of the squared 

differences between the expected and actual values. This 

metric is valuable for assessing the accuracy of a model in 

detecting various faults in rotational machinery. Figure 2 

and Table 2 depict the comparative evaluation of RMSE in 

suggested and traditional methods. When compared to 

existing methods such as DBN and SVR, which have 

RMSE values of 0.015 as well as 0.016, respectively, the 

suggested DO-CB achieves an RMSE value of 0.011. Our 

suggested approach produced better results for robustness 

identification and incorporates a range of errors. The 

RMSE equation (22) is as follows, 

 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑𝑚

𝑗=1 (𝑧𝑗 − 𝑧̂𝑗 )
2
   (22) 

 

 

Figure 2. Result of RMSE 

 

Table 2. Result of RMSE 

Methods RMSE 

DBN 0.015 

SVR 0.016 

DO-CB [Proposed] 0.011 
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MAPE is a statistic expressed as a percentage that 

calculates the average absolute percentage difference 

between expected and actual values. It offers a 

comparative assessment of the precision of a model in 

identifying different malfunctions in rotating machinery. 

The comparative evaluation of MAPE is shown in 

Figure 3 and Table 3. When compared to the currently 

existing methods, such as DBN along with SVR, which 

have MAPE values of 0.9283 and 1.0323, respectively, 

the suggested DO-CB has a MAPE value of 0.7546. The 

proposed methodology demonstrates superiority over 

the existing methods for identifying data to ensure 

robustness and includes a variety of faults. The MAPE 

equation (23) is as follows, 

 

𝑀𝐴𝑃𝐸 =
1

𝑚
∑𝑚

𝑗=1 |
𝑧𝑗−𝑧̂𝑗

𝑧𝑗
| × 100 %  (23) 

 

 

Figure 3. Result of MAPE 

 

Table 3. Result of MAPE 

Methods MAPE 

DBN 0.9283 

SVR 1.0323 

DO-CB [Proposed] 0.7546 

 

MAE is a measure of the average absolute difference 

between expected and actual values. It assesses the total 

quantity of mistakes by assigning equal weight to errors 

without regard for their direction. The comparative 

evaluation of MAE is shown in Figure 4 and Table 4. 

When compared to the currently existing methods, such 

as DBN and SVR, which have MAE values of 0.0098 

and 0.0108, respectively, the suggested DO-CB has a 

MAE value of 0.0074. The suggested technique 

outperforms existing methods for identifying data to 

assure resilience and incorporates a range of faults. The 

MAE equation (24) is as follows, 

 

𝑀𝐴𝐸 =
1

𝑚
∑𝑚

𝑗=1 |𝑧𝑗 − 𝑧̂𝑗 |  (24) 

 

 

Figure 4. Result of MAE 

 

Table 4. Result of MAE. 

Methods MAE 

DBN 0.0098 

SVR 0.0108 

DO-CB [Proposed] 0.0074 

 

4.  CONCLUSION 

 

In this study, we introduced a novel approach, DO-CB, 

developed on identified data and include a variety of fault 

scenarios. Synergistic Dandelion Optimization enhances 

the model's feature space search, optimizing the CatBoost 

method. This novel technique improves the recognition 

and classification of industrial failures in rotating 

machinery. The CWRU dataset was gathered and 

experimental results showed RMSE (0.011), MAPE 

(0.7546), as well as MAE (0.0074). The suggested 

method's outcomes were contrasted to other utilized 

algorithms and the outcomes of the evaluations showed 

that the suggested strategy was more effective for detecting 

various faults of rotational machinery. The efficiency of 

machine learning models is based on the data's quality. If 

the input information is noisy, complete and accurate, it 

can lead to false detections as well as misclassifications. In 

future research, continued advancements in deep learning 

techniques may lead to more sophisticated models capable 

of learning intricate patterns in machinery data, thereby 

improving fault detection accuracy. 
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