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A B S T R A C T 

The article considers the basic principles of constructing a method for 

processing quasi-periodic pulse signals. The method is based on the combined 

use of wavelet analysis and the Hermite transform, in particular, the Gauss-

Hermite function. Wavelet transform is considered as a cross-correlation 

function. The Gauss-Hermite functions are used as a basis in the wavelet 

analysis. Approbation of the method is carried out as on a test signal, in the 

form of a rectangular pulse with additive noise, which at some point in time 

has a local inhomogeneity, also on the real signal received from the bearings 

of the gas turbine engine. 
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1. INTRODUCTION  
 

The analysis of form and parameters of quasi-periodic 

pulse signals against the background of noise, which is a 

slowly changing process, is an integral part of the 

information processing procedure in order to diagnose 

the state of an object. For example, signals appear 

during the functioning of dynamic systems: various 

machines and mechanisms, living organisms and other 

objects. In most cases, these objects operate in a cyclical 

manner. In mechanical systems, this is due to the 

presence of rotating parts, in a living organism - the 

leading centers of nervous excitation. Very often, such 

systems are subject to random disturbances. In 

particular, in a biological object due to various 

pathologies, disturbances in the rhythm of its 

functioning occur. In mechanical systems due to 

interaction with the environment, under the influence of 

a time factor or other reasons, disturbances in the 

cyclicity of work occur. If these violations go beyond 

the permissible limits, then there is a reason to draw a 

conclusion about the malfunction of machines and 

mechanisms or about a person's disease. 

 

The most common processing method to state the value 

of quasiperiodic impulse systems is spectral analysis 

(Barkova et al., 2019). Due to well-studied 

mathematical apparatus, it allows you to detect various 

defects in the system. Spectral analysis confidently 

copes with the task of diagnosing dynamic systems if 

the defect is of a periodic nature. This is expressed by 

the characteristic frequency components in the spectrum 

of the signal under investigation. But if the defect is not 

periodic or quasi-periodic, has a random character, then 

the efficiency of the spectral analysis is significantly 

reduced. 
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This problem can be partially solved using the 

windowed Fourier transform. In this case, the frequency 

resolution depends on the duration of the window, and 

the dynamics of the system functioning is assessed by 

using the average frequency. It is difficult to estimate 

the quasiperiodicity of the system from the average 

frequency, thereby reducing the accuracy of its 

diagnostics. In addition, using this processing method, 

we are faced with the uncertainty of the choice of the 

window width. With a small width, we lose exactly in 

frequency. With a large width, the estimate of 

quasiperiodicity is lost. 

 

Thus, to solve the above problem, it is necessary to 

measure the distance between quasiperiodic pulses. 

Then we are faced with the need to adapt to the shape of 

the impulses so that the assessment of the dynamics of 

their repetition is more accurate. This is complicated by 

the fact that the shape of the pulses is constantly 

changing, i.e. the system under study is nonstationary.  

 

The method that is based on the combined use of 

wavelet analysis (Jiang & Mahadevan, 2011) and 

Hermite transform was developed to eliminate the 

above disadvantages. 

  

2. BASIC PRINCIPLES OF THE METHOD  
 

The traditional interpretation of the wavelet transform is 

based on the consideration of basis functions as time-

limited oscillation segments. Variation their scale is 

equivalent to changing the frequency composition of 

these functions (Vorobyov & Gribunin, 1999).  

                          ,, ( ) ( )s in aW a S t t dt
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As can be seen from (1), the wavelet coefficients in the 

general case are determined by the integral 

transformation of the signal. Continuous wavelet 

transform  ,sW a   is the scalar product of the process 

under study ( )inS t  and basis functions , ( )a t .  

 

The basic functions are real, defined on a certain 

interval and fluctuate around the abscissa axis: 

,
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  – shift parameter, shows the location in time, a  – 

scale parameter.  

 

The pulses of a quasi-periodic signal can have an 

arbitrary shape. Therefore, for more efficient 

diagnostics, it is necessary to use orthogonal basis 

functions. The most popular orthogonal wavelets are the 

Haar and Daubechies (Daubechies, I., & Heil, 1992). 

They have a number of limitations and disadvantages. 

Haar wavelets poorly describe smooth functions, and 

Daubechies functions have an asymmetric shape, which 

narrows the area of their practical use. Thus, with the 

help of classical wavelets, it is not possible to take into 

account all the features of the signal shape. In addition, 

when processing real signals, it is necessary to construct 

basis functions based on the discrete recording of the 

signal, and this is absent in the classical interpretation of 

the wavelet transform. As a basic function, it is 

proposed to use the Gauss-Hermite functions (FGH), 

defined in the Hermite transform. The energy of the 

FGH is concentrated on a limited interval in both the 

time and frequency domains. Therefore, FGH work with 

a finer time-frequency localization. This representation 

of the process under study is less robust to noise, but it 

retains a much larger number of characteristic features 

of the signal. The inherent localization of the FGH in 

the time domain makes them very suitable for 

representing the bearing support signals in the form of a 

generalized Fourier series based on these functions. 

  

The FGH have the following form (Martens, J-B., 

1990): 

                2exp 0.5 / !2n
nt

n
H t t n               (3) 

where  H tn – Hermite polynomials, n – FGH order. 

 

Transformation (1) can be considered as a cross-

correlation function of the signal and the basis function 

sliding over it. The higher the upper limit of the 

correlation integral, the greater the degree of similarity 

between the signal and the function. Taking into 

account the above said, substituting expression (3) into 

expression (1) taking into account expression (2), we 

have the following correlation integral (Balakin & 

Shtykov, 2019): 
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where  
~

,S a tptrn  – basic function. 

In turn, the basic function has the following form: 
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where ( )nA a – the spectrum of the signal in the FGH 

basis,  , cW n n – the smoothing window for weakening 

the Gibbs effect in the FGH space, n  – the number of 

the FGH.  

 

Let us consider a test example of the calculation: a 

rectangular pulse with additive noise, which at some 

point in time has a local inhomogeneity in the form of a 

third order FGH with a fixed scale parameter (figure 1, 

a). 

 

Since the inhomogeneity is characterized by one feature, 

the correlation integral (4) has the following form: 

                    
3
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By varying the scale parameter, the duration of the local 

inhomogeneity and its location can be found. The 

results of such a procedure are reflected in the form of 

level lines (figure 1, b). Having found the local 

maximum of the surface in figure 1, b, one can find the 

location (t = 0) of the local inhomogeneity and its 

duration 0.2. The result of calculating the correlation 

integral (6) with the scale parameter 0.2a   is shown in 

figure 1, c.  

 

 

Figure 1. Processing results: а) - Rectangular pulse with 

a singularity in the form of a third order FGH, b) - the 

result of calculating the cross correlation function. 

 

We can compare the obtained result with the classical 

wavelet transform. Figure 2 shows the wavelet 

spectrograms of a rectangular pulse, constructed with 

various basic functions. The construction of the basic 

functions was carried out with the standard tools of the 

MATLAB package, so the values of the scale parameter 

are different. It is advisable in this case to compare not 

quantitatively, but qualitatively: to identify the fine 

structures of the process under study. 

 

Local inhomogeneity is more confidently distinguished 

by processing using the MHAT function, since it is 

adapted for analyzing complex signals due to its narrow 

energy spectrum and two moments (zero and first) equal 

to zero. 

 

The key difference between the two processing 

approaches is that at the output of the algorithm under 

consideration we have a cross correlation function, 

which allows us to estimate the degree of similarity of 

the reference signal and the reference, and at wavelet 

processing, the spectral distribution. 

 

The main idea of the processing method is as follows: 

from the investigated quasi-periodic pulse signal, we 

select a fragment, on the basis of which we construct the 

basis function (5). A fragment can represent a local 

inhomogeneity, the dynamics of which we want to trace. 

Next, we calculate the correlation integral (4), where the 

result is a cross correlation function, which is a complex 

surface with many local extrema, due to the scale 

variation and time shift. Supposing that a working 

system operates cyclically, we determine the distance 

between each extremum. If this distance is in the limit 

of the confidence interval, then the system is in good 

order, otherwise it is not. It is convenient to reflect such 

a dynamic picture using scatterograms. The speed of 

calculating the correlation integral can be increased by 

going to the frequency domain. 

 

 

Figure 2. The results of processing using: a – MHAT 

function, b – Gauss 3 orders,  c – Gauss 4 orders, d –

Morlet wavelet 
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For this, it is necessary to replace the operation of 

calculating the correlation integral by filtering in the  

spectral region. This procedure is carried out using the 

generalized Rayleigh formula. As a result, the 

correlation integral has the following form: 

       
1

, exp
2

R a S K a j dout in n
a


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
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 & &  (7)                             

where  Sin &  – complex Fourier spectrum,  K an &  – 

complex filter gain, which is 
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Let us consider in more detail the operation of the 

method using the example of bearings of rotor supports. 

 

3. SIGNAL PROCESSING OF BEARINDS 

OF A GAS TURBINE ENGINE 
 

A gas turbine engine is a complex technical system with 

many different vibration sources (Balakin et al., 2021). 

One of these sources is the rotor bearing arrangements, 

the failure of which interrupts the further operation of 

the gas turbine engine. In good condition, the bearing 

arrangements function cyclically. However, it is at an 

early stage of development that the cyclicity is violated, 

which manifests itself in the form of quasi-periodicity of 

pulse repetition. Let us estimate the quasiperiodicity 

using the method presented. 

 

Figure 3 shows fragments of three bearings. The first 

one is in good condition, the other two are defective. In 

accordance with the processing method, first one need 

to isolate the local heterogeneity from the process under 

study.  

 

 

Figure 3. Bearing vibration recordings: a – no damage, 

b and c – there is damage 

 

After analyzing the records of a bearing without a 

defect, a fragment was selected, which is shown in 

figure. 4, since it is most often found in the record. 

 

 

Figure 4. Basic function (black dash-dotted line), 

selected fragment (red solid), N - number of samples 

 

Based on (5), we construct a basis function from a 

fragment of a record of a serviceable bearing. Given the 

approximation error, one can find the optimal number of 

FGH in (5). Figure 5 shows a 5% approximation error 

for various parameters of the scale and the number of  

FGH.  

 

The approximation error in the general case can be 

calculated using the following formula: 
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   (9)    

Then in accordance with (4), we construct the 

correlation function. Fragments of the cross-correlation 

function for bearing signals are shown in figure 5. By 

finding the distance between the extrema, for example, 

using the steepest descent method, one can display the 

dynamics of pulse repetition or quasiperiodicity. 

 
Figure 5. The result of calculating the cross-

correlation function: a – no damage, b and c – there is 

damage 

 

It is convenient to display quasi-periodicity using 

rhythmograms and scatterograms. More details about 

the procedure for constructing a rhythmogram and a 

scatterogram can be found in (Balakin et al., 2022).  
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4. CONCLUSIONS 
 

The presented processing results both on the test signal 

and on the real signal allow us to state that the method 

based on the combined use of the wavelet transform and 

the Hermite transform can be applied to detect and 

estimate the quasiperiodicity of various local 

inhomogeneities. In turn, inhomogeneities can 

characterize both the correct operation of the system 

under study and the system defects. The choice depends 

on the thing, the dynamics of which process the 

researcher wants to trace. The key feature of the method 

is that it is possible to display the dynamics of pulse 

repetition of arbitrary shape in order to diagnose 

quasiperiodic pulse systems. The obtained processing 

results confirm the state of the system under study, in 

particular the bearing arrangements. The presented 

method in turn can be applied as an additional 

diagnostic tool to the proven classical spectral analysis.
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