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A B S T R A C T 

A new algorithm is presented to reduce computational costs in solving 

harmonic balance equations obtained by separating state variables. In the 

author's previous works, an approach was proposed where the vector (matrix) 

of unknowns is replaced by two matrices of small dimension, which leads to 

two systems of balance equations that are solved iteratively. The first equation 

reduces the number of harmonics in the balance equations, the second 

equation reduces the number of circuit nodes. In this paper, it is proposed to 

further reduce computational costs by approximating part of the elements of 

the balance equations using the decomposition procedure based on singular 

values. It is proposed to construct a matrix of sets of responses of nonlinear 

dependencies of circuit models before solving the problem by an iterative 

method. This matrix reflects all the main changes in nonlinear dependencies 

with changes in the amplitudes of the input effect and over time. The resulting 

matrix is then approximated by applying decomposition based on singular 

values. Comparison of the proposed algorithm with the standard harmonic 

balance method and algorithms developed by the author earlier showed its 

high efficiency. 
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1. INTRODUCTION 
 

Harmonic balance (HB) methods are widely used for 

modeling nonlinear circuits in CAD systems in 

electronics (Rizzoli et al., 1988, Gilmore & Steer, 1991, 

Kundert, 1999). The main problems of algorithms and 

software tools of CAD systems based on HB methods 

are significant memory requirements and huge 

computational costs for simulation of complex nonlinear 

electronic circuits containing thousands of electronic 

components and hundreds of thousands for circuit 

model equations (White & Sangiovanni-Vincentelli, 

1987, Kundert et al., 1988, Rizzoli et al., 2011).  

 

For example, for circuits containing about 10 thousand 

of circuits nodes and taking into account about one 

thousand harmonics (with multifrequency excitation), 

the number of variables (unknowns, equations) of the 

model will be approximately 10 million. If we use for 

solving the harmonic balance equations the Newton 

method when the square of this number of unknowns or 

the size of Jacobian matrix will be 100 million. All this 

suggests that new more economical methods of storing 

and solving of harmonic balance equations in modern 

electronic CAD systems are needed (Nastov et al., 2007, 

Lantsov, 2020).  
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In this paper, we propose a new method and algorithm 

for solving and storing harmonic balance equations 

using the ideas of model order reduction (MOR) 

algorithms (Bond & Daniel, 2007). MOR methods have 

gained popularity in recent years (Bond & Daniel, 2009, 

Lantsov & Dolinina, 2016). This MOR methods allow 

to significantly reduce the number of unknowns and the 

size of memory for storing of electronic circuits model 

equations for dynamic mode analysis. The main 

problems of MOR methods for modeling electronic 

circuits are associated with very small reductions in 

computational costs (while reducing the dimensions of 

the equations and required memory for the model). 

 

In (Lantsov, 2020a), a new method for solving HB 

equations was proposed, based on dividing the 

equations into two components of very small dimension. 

The reduction of memory and computational costs in the 

new method was determined by the significantly smaller 

dimension of the equations and the fact that they were 

used in solving sequentially. In (Lantsov, 2020a), a 

simple iteration method was used to solve the equations. 

Further development of the method was proposed in 

(Lantsov, 2020b), where relations were obtained and an 

algorithm for implementation in software tools based on 

the use of Newton's iterative method was developed. 

Further development of the method and implementation 

algorithms was proposed in (Lantsov & Papulina, 

2021), where detailed algorithms for implementing of 

method in CAD software tools for electronics are 

presented. 

 

The method and algorithms of its implementation in the 

software for modeling complex electronic circuits have 

shown high efficiency, especially when solving 

problems of very high dimension (Lantsov, 2020, 

Lantsov & Papulina, 2021).  

 

The experience of using previously developed software 

tools has shown that the main costs of computer 

memory and simulation time are associated with the 

storage and processing of the Jacobian of full 

dimension. In this paper, an algorithm is proposed to 

significantly reduce computational costs using an 

effective method of approximation of the Jacobian of 

the harmonic balance equations when solving by the 

Newton method. 

 

2. BASIC EQUATIONS OF HARMONIC 

BALANCE METHOD 
 

The basic relations and algorithms for solving the HB 

equations for electronic circuits by the new method are 

given in detail in (Lantsov, 2020b, Lantsov & Papulina, 

2021), so here we will give only some basic relations 

necessary for the presentation of the proposed approach. 

 

Consider the nonlinear circuits which described by the 

system of nonlinear integra-differential equations 

.0)()()(

))((
))(()),((








t

E tidvty

dt

tvdq
tvittvf



     (1) 

Here, v(t) is a vector of node voltages with dimension 

N; i(v(t)) is a vector of currents for resistive elements; 

q(v(t)) is a vector for capacitor charges; u(t) are a input 

sources; y(t) describes linear part of circuits; i and q 

describe a nonlinear elements; the size of equations is N 

(Lantsov, 2020a). 

 

In the HB method, it is assumed that functions v and f 

are represented as a Fourier series (so, the HB method is 

referred to as methods in the frequency domain): 
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where Tkk /2,    is the base frequency. 

 

The equations (1) then can be transformed into next 

form of nonlinear system of equations 
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In vector-matrix form 

 ( )   ( )                  (2) 

where V is a vector of unknowns (nodal voltages in the 

circuit); the first term I(V) describes nonlinear elements; 

the second term YV characterizes the linear part of the 

circuit; the element IE is a vector of input sources. The 

dimension of the equations is equal to [N×(2K+1)], 

where N is the number of nodes in the circuit, K is the 

number of harmonics taken into account (Lantsov, 

2020a). 

 

The solution of harmonic balance equations (2) in the 

frequency domain is most often performed by the 

Newton iterative method 

 (  )            (  )            (3) 

where  (  ) is a Jacobian matrix;            
       is iteration number. The Jacobian matrix can be 

found as 

 (  )       ⁄        
  
  ⁄    .       (4) 

In HB method the dimension of Jacoby matrix 

([(2К+1)×N] × [(2К+1)×N]) which for complex malty 

components circuits becomes too large and needs 

excessive computer memory an computational costs. 

 

Model order reduction seeks to reduce the 

computational complexity and computational time of 
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large-scale dynamical systems by approximations of 

much lower dimension that can produce nearly the same 

input/output response characteristics.  

 

The equations (1) for simplicity we present in form 

  ( )
  
⁄      ( )   , ( )-            (5) 

Here t ∈ [0, T] denotes time, v(t)=[v1(t),..., vN(t)]
T
 ∈ R

N
, 

A ∈ R
N×N

 is a constant matrix, and F is a nonlinear 

function evaluated at v(t) component wise, i.e., F = 

[F(v1(t)),...,F(vN(t))]
T
. The matrix A is the discrete 

approximation of the linear operator, and F is a 

nonlinear function of a variable v. 

 

In MOR methods projection-based techniques are 

commonly used for constructing a reduced-order 

system. They construct a reduced-order system of order 

k   N that approximates the original system from a 

subspace spanned by a reduced basis of dimension k in 

R
N
. Let Vk ∈ R

N×k
 be a matrix whose orthonormal 

columns are the vectors in the reduced basis. Then, by 

replacing v(t) in (5) by v(t) = Vk  ̂(t),  ̂(t) ∈ R
k
 and 

projecting the system (5) onto Vk, the reduced system of 

(5) is of the form  

  ̂( )
  
⁄      

     ̂( )    
  ,   ̂( )-   (6) 

The choice of the reduced basis clearly affects the 

quality of the approximation. The techniques for 

constructing a set of reduced basis use a singular value 

decomposition (SVD) of snapshots, which are discrete 

samples of trajectories associated with a particular set of 

boundary conditions and inputs. It is expected that the 

samples will be on or near the attractive manifold. Once 

the reduced model has been constructed from this 

reduced basis, it may be used to obtain approximate 

solutions for a variety of initial conditions and 

parameter settings, provided the set of samples is rich 

enough.  

 

The paper (Chaturantabut & Sorensen, 2010) illustrates 

the computational inefficiency that occurs in solving the 

reduced-order system that is directly obtained from 

SVD approach. Equation (5) has the nonlinear term  

  ( ̂( ))    
  ,   ̂( )-. 

  ( ̂( )) has a computational complexity that depends 

on N, the dimension of the original full-order system 

(5). It requires a full evaluation of the nonlinear function 

F at the N-dimensional vector    ̂( ). As a result, 

solving this system might still be as costly as solving the 

original system.  

 

One of way to overcome the difficulty is to approximate 

the nonlinear function in   ( ̂( ))  by projecting it 

onto a subspace that approximates the space generated 

by the nonlinear function and that is spanned by a basis 

of dimension m   N. The discrete empirical 

interpolation method was proposed in paper 

(Chaturantabut & Sorensen, 2010) for these purposes. 

 

Another idea described in (Lantsov, 2020) was to 

replace the vector of variables V of the HB equations (2) 

with two matrices of reduced dimension (Figure 1) 

         , 

where the matrix VH reduces the number of harmonics 

and has dimension [N×R], VN - reduces the number of 

nodes of the circuit and has dimension [R×(2K+1)], R is 

the reduced dimension of the equations, R<<N, 

R<<(2K+1). 

Figure 1. Replacing the matrix V with two new matrices 

of reduced dimensions 

 

Replacement of (2) leads to two systems of balance 

equations of reduced dimension as it was obtained in 

(Lantsov, 2020a) 

 (  )   (    )    
           

       (7) 

and 

 (  )     
    (    )            

     .    (8) 

The equation (7) reduces the number of harmonics in 

the balance equations and has dimension of equations as 

[N×R]. The equation (8) reduces the number of circuit 

nodes and has dimension of equations as [R×(2K+1)]. 

Equations with reduced dimension are solved 

sequentially. 

 

In the traditional circuit simulators, the more convenient 

form of the equations for Newton's method is on the 

new value      instead of the increment       in (3) 

        (  )  (       )       (  ), 

 (  )            
  
  ⁄      ( 

 ), 

As a result, the final expression for calculations (7) by 

Newton's method gives us the following iterative 

formula in the form of the system of linear algebraic 

equations (SLAE) (Lantsov, 2020b) 

 (  
 )    

        
      (9) 

Here the Jacobi matrix is defined as 

 (  
 )        

⁄      ⁄      
    .    (10) 



Lantsov, Approximation of the nonlinear dependencies in harmonic balance equations 

 428 

The vector of the right parts of the system of equations 

(9) will have the form (Lantsov, 2020b) 

  
        

      ⁄    
   ( )   

 .       (11) 

Similarly, to solve the system of equations (8), we have 

the following basic iterative formulas (Lantsov, 2020b) 

 (  
 )     

       
  ,      (12) 

 (  
 )       

⁄    
       ⁄       (13) 

  
      

     
  
  ⁄    

     
   ( ).    (14) 

 

3. APPROXIMATION OF DERIVATIVES 

FOR NONLINEAR DEPENDENCIES 
 

Note that in equations (11) and (14) there is an element 

I(V) that determines the dependence of current on 

voltages on nonlinear elements in the frequency domain. 

In standard of circuit simulation tools, all models of 

nonlinear devices (elements) are described by 

dependencies in the time domain    ( )    ,   ( )]. 
The basic HB equations are solved in the frequency 

domain. Therefore, at each iteration of Newton method, 

when solving equations, it is necessary to make 

transformations from the frequency domain to the time 

domain and back using the Fast Fourier Transform 

(Lantsov & Papulina, 2021, Carvalho et al., 2006, 

Nastov et al., 2007, Lantsov & Papulina, 2021) 

 ( )    * ( )   , ( )-+    .  (15) 

Here Г is the forward and 
1Г  is the inverse Fourier 

transform. The relationship between the representation 

of the signal in the time and frequency domains will be 

defined as      and       . Similarly, in the 

iterative formulas there is an element of calculating the 

derivatives of currents of nonlinear elements according 

to the corresponding voltages 

  
  ⁄    {

  ( )
  ( )⁄ }    .  (16) 

Earlier, in previous works (Lantsov, 2020, Lantsov & 

Papulina, 2021), the standard part of traditional HB-

based software tools and the full dimensions of these 

equation elements were used to calculate (15) and (16). 

Unfortunately, the experience of using software tools 

implementing previously developed methods and 

algorithms has shown that the main computational costs 

(memory and time) are associated precisely with the 

calculation of element I(V), and especially with the 

calculation of the derivative for the Jacobian     ⁄ . 

 

Note that the element     ⁄ . will be the same for 

equations (10 and 11), (13 and 14). It is proposed to 

approximate this element and reduce its dimension 

using a method widely used in recent years based on 

Singular Value Decomposition (SVD) (Antoulas & 

Sorensen, 2001, Chaturantabut & Sorensen, 2010, 

lantsov, 2012, Charumathi et al., 2019). 

 

This approximation will correspond to the methods of 

averages used in the algorithms for solving the HB 

equations to approximate the Jacobian in (Filicori & 

Monaco, 1988, Kundert et al., 1990, Ushida et al., 

1992), where equation (3) can be replaced as 

 (  )       ⁄           . 

In (Kundert et al., 1990) average value was obtained as 

     
 

  
 ∫
  , ( )-

  ( )

  

 

     

It is important to note that the approximation is 

performed once and before the start of the main 

iterations. 

 

In this paper we use another approach. The collection of 

output waveforms (snapshots or samples of trajectories) 

is discretized and the times at which the derivatives are 

crossed are recorded. The discretized input and output 

waveforms can be collected in one single matrix form 

(snapshot matrix) of responses of nonlinear elements in 

the form (Ramalingam, 2007) 

 ( )   ,  ( )     ( )-
  ∈    , 

where   ( )   
  ( )

  ( )⁄    ( )  are derived currents 

of nonlinear elements (usually in circuit simulators, 

these derivatives are in analytical form); time t ∈ [0, T], 

T is the period of the lowest harmonic spectrum at the 

output of the circuit; n = NNE · NIN; NNE is a number of 

nonlinear dependencies; NIN is a number of analysis 

when we change the amplitude of the input. 

 

The total dimension of the matrix of sets G will be 

defined as n·Nt, where Nt is the number of time 

(discrete) samples on the period T. The correct and 

sufficiently large for selection of a set of snapshots is a 

decisive factor in building of the SVD algorithm. This 

choice can greatly affect the approximation of the initial 

description (Ramalingam, 2007).  

 

It is assumed that the sample set will correspond to the 

dominant states of the model and the sample set is large 

enough. The SVD method creates a reduced basis, 

which is optimal in the sense that the approximation 

error with respect to data sets is minimized 

(Ramalingam, 2007).  

The SVD algorithm with respect to the matrix of sets G 

gives the following decomposition 

G = U Ʃ V
T
,    (17) 
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where the matrices    (       )  ∈   
    and 

   (       )  ∈   
     are orthogonal, i.e. U V =I, 

where I is the unit matrix, )0...( 21  rdiag   is 

a diagonal matrix of singular values.  

 

The matrix U is called the left singular matrix and its 

columns provide the orthogonal basis for the columns of 

G. The matrix V is called the right singular matrix and 

its columns provide the orthogonal basis for the rows of 

G. As noted above, the columns of V provide the 

orthogonal basis for the rows of G and since each row 

contains a discretized waveform, the columns of V turn 

out to be the orthogonal basis for the waveforms in 

matrix G.  

 

Now (17) can be rewritten by post-multiplying both 

sides by V. Since V is orthonormal (V
T
V = I) we get GV 

= UΣ. We denote the resultant product matrix as M 

called the moments matrix (Ramalingam, 2007) because 

this is another way to represent time points just like an 

equivalent representation of any function by its 

moments: 

M = GV = UΣ. 

The moments matrix defined here is a linear 

combination of time points weighed by the right 

singular vectors (rsv) V.j:  

          mij = Gi.V.j = ∑        
 
    

where 

   (

                                
                                

 
                                   

)  

The right singular vectors transform a waveform from 

time domain t = (t1, t2, . . ., tn) to moments domain m = 

(m1, m2, . . ., mn) through m = tV and vice-versa through 

t = mV
T
.  

 

This equivalent representation leads to an interesting 

possibility in the context of timing analysis. If a 

waveform can be represented accurately using a few 

moments then by propagating these moments, one can 

do an accurate waveform analysis instead of 

propagating all the n time points.  

 

Suppose we represent a waveform by r moments, where 

r < n then the last n - r moments are set to zero. The 

process of setting the last n - r moments to zero is 

equivalent to setting the last n - r singular values to zero 

since zeroing singular value will force the 

corresponding moment to zero. But zeroing out singular 

values is equivalent to approximating a matrix G with 

another matrix  ̂ having a smaller rank. To measure the 

goodness of approximation, Frobenius norm is used. 

This norm measures the goodness of fit in a root mean 

square fashion. The Frobenius norm of G is defined as  

        √(∑∑   
 

 

   

) 

  

   

 

There is an equivalent way to compute the Frobenius 

norm of a matrix by using the singular values of a 

matrix. 

 

The above discussion can be summarized by saying that 

the following statements are equivalent (Ramalingam, 

2007). 

• Approximating a waveform Gi. using the first r 

moments. 

• Approximating a matrix considering the first r-

singular values of matrix G. 

• A rank-r approximation of matrix G in Frobenius 

norm. 

 

A reduced matrix of averaged values of Gav is obtained 

using the following relation (Ramalingam, 2007) 

Gav = U Ʃ V
T 

= U     (                  ) V
T 

. 

To coordinate the dimensions in the balance equations, 

the value of N can be taken as the value of r, which is 

easily done in most cases. 

 

The final expressions for calculation by iterative 

formulas will look like this. For equations (10-11) 

 (  
 )          

    ,   (18) 

  
        

           
   ( )   

 .   (19) 

For equations (13-14) 

 (  
 )     

        ,  (20) 

  
      

            
     

   ( ). (21) 

 

_____________________________________________ 

Algorithm 1 (Solution of equations 9) 

1:  Input:   
 ,   

 ,    ; 

2:    
   (  

 ) ; 

3:  Access to the library of standard non-linear 

elements. Calculation of  (  ), equations (15); 

4:  Calculation (18) and (19); 

5:  Solution of SLAE (9). 

_____________________________________________ 

 

_____________________________________________ 

Algorithm 2 (Solution of equations 12) 

1:  Input:   
 ,   

     ; 

2:    
    (  

 ) ; 

3:  Access to the library of standard non-linear  

elements. Calculation of  (  ), equations (15); 

4:  Calculation (20) and (21); 

5:  Solution of SLAE (12). 

_____________________________________________ 
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___________________________________________ 

Algorithm 3 (Newton Iterations) 

1:  DC analysis 

  
     

  ;     
     

  ;  

2: Calculation    ; 

3:  i = 0; 

4:  Algorithm 1; 

5:  Algorithm 2; 

6:  if  (  
      

   )   (  
      

   ) stop. 

7:  i = i + 1; 

8:  go to 4. 

_____________________________________________ 

 

All the developed algorithms are implemented as a 

supplement to the general-purpose circuit modeling 

program SMORES (Bond, 2010), implemented as open 

code in the Matlab/Simulink system. 

 

Verification of the proposed algorithms based on the 

circuit simulation software tools (Lantsov, 2020, 

Lantsov & Papulina, 2021) was performed on a well-

known example from the author's previously published 

works and examples known from publications in the 

world literature (Fig. 3, Bond & Daniel, 2007, Fig. 1, 

Lantsov & Dolinina, 2016).  

 

This example is characterized by the fact that by 

changing the number of nonlinear cascades of the 

circuit, it is possible to increase the dimension of the 

circuit to very high dimensions determined by the 

memory of a particular computer.  

 

The comparison was performed both with the standard 

HB method and with previously published results. Since 

the convergence in all the examples coincided with the 

calculations by the standard HB method, we do not 

provide graphs of the results.  

 

The table 1 shows the results of the comparison. 

 

Table 1. Comparison of methods by calculation time 
 Calculation 

options: the 

number of 

repeating 

cascades of 

the circuit, the 

number of 

nodes, the 

number of 

harmonics 

taken into 

account 

 

New 

algorithm 

 

Standard 

HB 

method 

 

The 

algorithm 

is in paper 

(Lantsov, 

2020a)] 

1 3, 11, 3 5 s 4 s 6 s 

2 3, 11, 99 9 s 9 s 11 s 

3 14,42, 3 20 s 22 s 23 s 

4 14, 42, 99 112 s 135 s 128 s 

5 45, 135, 3 175 s 206 s 196 s 

6 45, 135, 99 271 s 342 s 302 s 

 

4. CONCLUSION 
 

The results of modeling of circuits that differ in the 

number of electronic circuit nodes and the number of 

harmonics taken into account showed that the gain was 

obtained for almost all variants. 

 

The new algorithm is suitable for solving large and 

super-large harmonic balance equations. 
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