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A B S T R A C T 

Smart manufacturing is the modern form of manufacturing that utilizes Industry 

4.0 enablers for decision making and resources planning by taking advantage 

of the available data. With the advancement of digitalization and industrial 

machine connectivity, it is now feasible to gather data in real-time from a 

variety of sensors (e.g. current, acoustic, vibration etc.) while the process is 

being carried out. The aim of the paper is to propose a framework for predictive 

maintenance PdM 4.0 and validate the framework by implementing it for a 

manufacturing process, milling in which a public data set from NASA 

repository is used to build and test the proposed PdM 4.0 system. The various 

machine learning classifiers such as: support vector regression SVR, RF, DT, 

XGBoost and MLP regressor have been used for remaining useful life and tool 

wear rate prediction. The model evaluation and comparison is based on metrics 

like (R- square), root mean square error and mean absolute error. 

© 2023 Published by Faculty of Engineering  

 

 

 

 

1. INTRODUCTION 
 

Today’s manufacturing organisations are under pressure 

to be more flexible, reduce downtime and costs and 

increase efficiencies. In addition to making new 

investments in production and technology, data-driven 

manufacturing companies are responding to these 

pressures by leveraging the capabilities of artificial 

intelligence (AI), the industrial internet of things, (IIoT), 

cloud computing technologies and innovations in smart 

measurement and quality data management systems—

resulting in greater visibility into their operations. Today, 

poor maintenance strategies can reduce a plant’s overall 

productive capacity by 5 to 20 %. Recent studies also 

show that unplanned downtime is costing industrial 

manufacturers an estimated $50 billion each year.This 

begs the question, “How often should a machine be taken 

offline to be serviced?” Traditionally, this dilemma 

forced most organizations into a trade-off situation where 

they had to choose between maximizing the useful life of 

a part at the risk of machine downtime (run-to-failure) or 

attempt to maximize uptime through early replacement of 

potentially good parts (time-based preventive 

maintenance), which has been demonstrated to be 

ineffective for most equipment components. Artificial 

Intelligence (AI) is already transforming manufacturing 

by outperforming humans in its ability to provide insights 

that inform timely, data-driven decisions and 

productivity improvements. In some operations, it looks 

for conditions like idle equipment or scheduled 

maintenance in order to make decisions about 

reassigning parts measurement.  
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Industry 4.0 which is focused on the interconnectivity of 

the system through the digitalization of industry, the 

amount of data generated by the sensors is enormous and 

there is a lot of information which can be gathered after 

applying proper techniques. Industry 4.0 comprises of 

two sections, the front-end technologies address four 

dimensions: smart manufacturing, smart products, smart 

supply chain, and smart working, whereas base 

technologies consider four elements: Internet of Things, 

cloud services, big data, and analytics are all buzzwords 

these days (Frank, Dalenogare, & Ayala, 2019). It 

contains a wide scope of processes, systems and 

technologies that are primarily relevant to industry's 

digitalization. The four technologies that are related to 

the data and it’s processing comprises of Industrial 

Internet of Things (IIoT), Cyber Physical Systems (CPS), 

Cloud Solutions & Decentralized Services, and the Big 

Data & Stream Processing which is responsible for 

processing the enormous amount of data generated from 

the production lines (Nabati & Thoben, 2017; Tao, Qi, 

Liu, & Kusiak, 2018). Techniques like machine learning 

is a feasible way for overcoming many of nowadays 

major problems in complex production systems. These 

data-driven approaches can detect patterns which are 

highly complex and non-linear from the data, comprises 

of variety in nature and sources, and then transform this 

raw data collected into feature spaces, or models, which 

can subsequently be used for prediction, identification, 

classification, regression, or forecasting (Siddhpura & 

Paurobally, 2013; Wuest, Weimer, Irgens, & Thoben, 

2016). 

 

Data-driven concept of PdM has been applied vastly in 

the sector of industrial manufacturing with the help of 

machine learning algorithms, such as linear regression 

(LR), support vector machine (SVM), decision tree (DT) 

or random forest (RM), and neural networks (NN) 

(Wuest et al., 2016; W. Zhang, Yang, & Wang, 2019). 

Previous research, on the other hand, has mostly 

concentrated on a single type of sensor measurement, on 

a single learning method, and on dataset generated by 

performing computer simulations or from performing 

private experiments. Besides this, not many addressed 

cutting machine maintenance, while the majority of work 

is focused on bearing or motor failure detection. In the 

work of (Lee et al., 2019) health monitoring of two 

machine tools, cutting tool and spindle motor bearing is 

done using SVM and artificial neural network (ANN) 

respectively. ANN was trained and established to acquire 

the characteristics of backlash error under normal wear 

and tear for a certain machine centre, and the backlash 

error was predicted (Li, Wang, & Wang, 2017). Authors 

(Madhusudana, Kumar, & Narendranath, 2017) have 

used sound signal for the monitoring and for the 

classification of the condition of face milling tool, SVM 

is performed on the extracted discrete wavelet transform 

features. SVM is used in a variety of applications, 

including condition monitoring of tool/machine, fault 

detection and tool wear (Widodo & Yang, 2007; Wuest 

et al., 2016). PdM system has been developed and 

implemented in real production line (Ayvaz & Alpay, 

2021), RF and Extreme Gradient Boosting (XGBoost) 

were the two top performers among six selected 

algorithms. 

 

Following are the main contributions of the work 

presented in the paper. 

• Development of a framework for implementing 

data driven PdM 4.0 using machine learning 

methods 

• Implementation of the framework on a 

manufacturing process and finally comparing 

the prediction performance of machine learning 

classifiers 

 

2. PROPOSED FRAMEWORK FOR 

PREDICTIVE MAINTENANCE 
 

Figure 1. presents the details of the proposed framework. 

The paragraphs discuss the various phases in the 

framework. The framework covers data collection, data 

pre-processing, feature engineering and finally building 

ML model and its improvement for estimating the tool 

heath so that correct maintenance decision could be 

taken. 

 

 
Figure 1. Framework for implementing PdM 4.0 
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2.1 Data collection 
 

Data is gathered in numerous ways from various sources. 

Above all, it is collected through the Internet of Things, 

which allows data generated from various equipment and 

product acquired quickly via various technologies like 

radio frequency identification, sensors and other 

monitoring devices, allowing for real-time monitoring of 

equipment and product health (Caesarendra & 

Tjahjowidodo, 2017; Y. Zhang et al., 2015). 

 

The huge amount of data gathered throughout 

manufacturing operations must be properly kept and 

integrated. In general, industrial data can be divided 

further into three categories: first include the segment 

where data is saved in the format of tables, symbol, digit 

etc. known as structured. Second type uses graphs, tress, 

documents in XML format etc. called as semi-structured 

and the third comprised data store in the format of image, 

audio and video etc. known as unstructured data. 

 

During CBM data stored is of two different cases which 

can be classified into two categories namely the event 

data and condition monitoring data. The event data tells 

about the events like breakdown, repair, installation and 

overhaul and its causes, what corrective actions have 

been taken and on the other side the condition monitoring 

data are measurements related to the state of a physical 

asset or the health condition. Data for condition 

monitoring can be collected in a variety of ways 

including pressure, vibration, acoustic, oil analysis, 

temperature, moisture, content using sensors. 

 

2.2 Data Pre-Processing 
 

To make intelligent and sensible decisions, data should 

be turned into a form of useful information and 

knowledge. The major steps which are generally 

involved in data pre-processing stage includes data 

cleaning (removing the unnecessary or correcting faulty 

readings), data integration (merging data from various 

sources). Data cleaning aims to address the problem of 

missing values and duplicate data.  

 

The raw data normally comprises of outliers and is to be 

treated before building a model as it could negatively 

affect the model accuracy. According to (Zonta et al., 

2020) the outlier is checked using the inter quartile rule. 

Interquartile range, for a distribution is the difference 

between or the data present in the third quartile and the 

first quartile of that distribution. It tells about the 

distribution of data and how wide is the distribution. As 

depicted in Figure 2, the points which are falling outside 

or are not in range of the box plot are termed as outliers 

and should be removed. 

 
Figure 2. Outlier detection using interquartile range 

2.3 Feature Engineering 
 

The machine leaning algorithms need input data on the 

basis of that output is generated. So this input data is 

composed of structured columns also called as features. 

For the case of supervised machine learning algorithms 

with the help of these features the prediction is done thus 

feature engineering is required to made the data 

compatible with the ML algorithms and it also improves 

the performances of the ML model as well.  

 

Feature generation is basically a process of 

transformation of the data to generate meaningful 

features which are more suitable input for ML 

algorithms. In the analysis of time domain, the response 

parameter is presented as function of time (Ambhore, 

Kamble, Chinchanikar, & Wayal, 2015). The time 

waveform is directly used in time-domain analysis. 

Traditional time-domain analysis derives descriptive 

statistics like maximum, mean, standard deviation, peak-

to-peak interval, crest factor, skewness, root mean square 

and kurtosis from time waveform data. These 

characteristics are known as time-domain characteristics 

(Jardine, Lin, & Banjevic, 2006). 

 

2.4 Training ML model 
 

The data after being pre-processed is now ready for the 

purpose of training the ML model. For the case of 

supervised ML algorithms, the data comprises of 

dependent variables, which is generally the output and 

more than two independent variables which are the 

features. This section describes a prediction model for the 

monitoring of tool’s condition along with the remaining 

useful life is presented using the historical data. For the 

purpose of training and testing the model, the processed 

data is randomly divided into training data, which 

comprises of 70% of the complete data and rest 30% is 

taken for the testing the ML model. Our study focusses 

on the regression task so for this some supervised ML 

algorithms like support vector regression (SVR), random 

forest (RF), decision tree (DT), Extreme Gradient 

Boosting (XGBoost) and MLP regressor (MLP) are 

chosen for the training and testing purpose. Same ML 

algorithms are utilized for RUL and tool wear prediction. 

ML model needs improvement before using getting into 

action in order to improve and boost the performance of 

the model this is achieved by the Hyperparameter 

Tuning. Most commonly used methods for 

hyperparameter tuning are manual search and grid 

search. As per the study (Wall, Rechtsteiner, & Rocha, 

2005) manually selecting the parameters for tuning is 

more efficient than grid search. So to get the best 

performance for the ML model, iteratively check the 

suitable parameter. 
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2.5 Prediction and Maintenance Decision 
 

After the various ML algorithms have been trained and 

are tested on the basis of the evaluation metrics the best 

performing ML model has to be chosen for predicting the 

condition of tool and RUL. Since the model have been 

trained using the historical data, when new unseen data 

from online monitoring will come, tool wear and RUL of 

tool can be predicted so that the right decision could be 

taken within the time, regarding the tool change or 

replacement so that minimum maintenance cost, fewer 

production stop and better surface quality can be 

achieved. For the case when tool is changed too soon 

before it reaches the end of its usable life, making it 

impracticable to completely exploit the tool's useful life. 

In another scenario, tool fails before it is replaced, 

resulting in unanticipated downtime and degraded 

surface finish. 

 

3. PREDICTIVE MAINTENANCE (PDM 4.0) 

FRAMEWORK APPLICATION 
 

The case selected is the data set related to the milling 

operation prepared by (Bergstra & Bengio, 2012) in the 

“Prognostic Center of Excellence (NASA – PCoE)”. The 

data set is generated by different experiment situation and 

runs on a milling machine under different operating 

conditions which are combinations of different feeds, 

depth of cut and material of work-piece. For all types of 

cuts i.e. entry cut, regular cut and exit cut, tool wear 

(flank wear) was investigated for all types of cuts and as 

a result the flank wear of milling insert was measured and 

noted down. Three different types of sensors are used for 

data sampling and are placed at several positions. 

Vibration sensors, acoustic emission sensors, and current 

sensors are used for data sampling, resulting in recording 

of 167 data samples. The data is formatted in a matlab 

structure of 1x167 array with different fields and their 

notation used is shown in Table 1 and each field of the 6 

sensors reading consists of 9000 data points. The notation 

of the sensor signal are also shown in Table 1. Total 16 

cases are present with varying number of runs. CI stand 

for Cast Iron and SS stands for Stainless Steel. The flank 

wear is measured at irregular interval of time sometimes 

up to a wear limit and sometimes even beyond the wear 

limit. When no measurement of flank wear is taken, no 

entry of flank wear has been made. 

 

The experiment were conducted on Matsuura machining 

center (MC) at 510 V which is a vertical CNC milling 

machine. A cutter with six number of inserts and KC710 

was selected as the insert for milling cutter as per the 

recommendations for roughing. The insert KC710 is 

coated with three different layers of titanium carbide 

(TiC), titanium carbonitride (TiC-N) and titanium nitride 

(TiN) all these three materials are used in sequence. 

Acoustic emission sensor and vibration sensor each are 

mounted on table as well as on machining center’ table. 

The selection of the parameters for the experiment was 

guided by industrial applicability and as per the settings 

recommended by manufacturer. Cutting speed chosen 

200 m/min or 826 rev/min. Depth of cut selected was 1.5 

mm or 0.75 mm. The selected feed was 0.5 mm/s and 

0.25 mm/s. Cast iron and stainless steel were the two 

choices selected for work-piece material. The dimension 

of the work-piece was 483×178×51 mm. 
 

Table 1. Description of the fields in the data set 

Notation Description 

R Counts the number of runs for which the tool   

    has been used for machining 

C Different number of cases ranging from (1,16) 

T Time duration of each run of experiment  

W The measurement of flank wear (mm) 

F Feed, two different values were chosen 

M Work piece material 

D Depth of cut, two different values were chosen 

a Alternating current reading from the spindle 

b Direct current reading from the spindle 

c Vibration signal generated from the table 

d Vibration signal generated from the spindle 

e Acoustic emission generated from the table 

f Acoustic emission generated from the spindle 

 

3.1. Data preprocessing 
 

To eliminate incorrect, duplicate, redundant and 

inconsistent data, it must be preprocessed. The following 

activities are included in data cleaning: format, 

duplication, missing value, and junk data cleaning. After 

observing the data file which has the readings from 

sensors, there are many cases in which the tool wear VB 

is not measured thus the data set have some missing 

values in the VB measurement, so the entire row has been 

deleted. 

 

The readings which are recognized as outlier have 

already been removed during the data cleaning method 

because the flank wear associated with those reading was 

not present in the data, hence the complete row was 

deleted and outlier signals were also removed. Each field 

entry in the signal was treated with a fill outlier in which 

a clipping fill method in MATLAB was used where the 

outliers were detected and the data points lying inside the 

percentiles specified in the threshold of the fill outlier are 

kept. For the example first case of 2nd run spindle AC 

current signal in Figure 3 shows how the signal looks 

before and after the outlier treatment. 

 

In the data set the variable material is a categorical 

variable, work-piece material cast iron is assigned 

numerical value 1 and steel as 2, that needs to 

transformed because it can degrade the ML algorithm 

performance, so for this one hot encoding is used to 

transform it into numerical variable. 
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Figure 3. Signal before (left hand side) and signal (right 

hand side) after the outlier treatment 

 

3.2. Feature Engineering 
 

During the feature extraction stage, the most appropriate 

features are extracted from the sensor signals that 

correlate well with tool wear and are unaffected by 

process circumstances. The characteristics in the 

literature are primarily generated from the frequency, 

time, time–frequency, or statistical domains, but we are 

focusing on time domain features in this work. As per the 

work of (Siddhpura & Paurobally, 2013) it is mentioned 

that most of the publications has used the time domain 

features and offer a great level of ease for the extraction 

purpose. Time domain features are extracted for 6 

sensors leading to a total of 54 numbers of time domain 

features. Notation is also added has been used in the work 

so that it is easy to understand features have been 

selected. 

 

The Figure 4 shows the features selected based on f_score 

for building the ML model based on XGBoost as it was 

outperforming as compare to other. Out of all the 59 

features the top 20 features were selected for predicting 

the flank wear. From sklearn which is a open source 

library for machine leaning, Select Kbest class has been 

used in which the method of f_regression has been 

applied reduce the number of features. The table A.1 and 

table A.2 describes about the selected features for tool 

wear and RUL prediction. The Figure 5 shows the 

features selected on the basis of f_score for building the 

ML model base on XGBoost as it was outperforming as 

compared to other algorithms as mentioned in the 

Chapter 5. Out of all the 59 features the top 20 features 

were selected for predicting the RUL. Again SelectKbest 

class has been used in which the method of f_regression 

has been applied reduce the number of features 

 

 
Figure 4. Selected features for building the ML model for tool wear prediction 

 

 
Figure 5. Selected features for building the ML model for RUL prediction 
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3.3. Training ML model 
 

The cleaned and simplified data is then used in data 

analysis and mining to generate new information when 

data reduction is completed. Machine learning, large-

scale computation, and the usage of forecasting models 

are just a few of the techniques that can greatly improve 

the effectiveness of data analysis (Tao et al., 2018). In the 

examined literature, the most commonly utilized ML 

algorithms are SVM, RF, and ANN. They've been used 

successfully in a variety of PdM applications (Çinar et 

al., 2020). In our study we have used Linear Regression 

(LR), Random Forest (RF), Decision Tree (DT), Extreme 

Gradient Boosting (XGBoost) and Multi-Layer 

Perceptron (MLP) method. The performances of all the 

ML algorithms has been compared. Each algorithm 

performance has been improved using Hyperparamter 

tuning and finally the best performing algorithm has been 

selected for the model building.  

 

The RUL is estimated for each observation by subtracting 

the maximum number of feasible runs and the current run 

for the tool. Similar to the tool wear, RUL is also a 

regression problem, all the ML algorithms applied are 

same but only difference lies in the target variable. 

 

In order to train the machine learning model, the data set 

is needed to be split into two parts one is the training data 

set and the other one is the test data set. In our case to get 

the best results from the ML algorithm, for tool wear 

prediction data set is split into 70% training and 30% test 

data and for RUL training is done with 80% of the data 

set and rest 20% for testing. Various configurations, also 

known as hyperparameters in ML, must be studied and 

compared against a benchmark in order to understand a 

specific predictive modelling problem. The effectiveness 

of the model is determined by the algorithms chosen and 

the hyperparameters associated with them (Ayvaz & 

Alpay, 2021). Multiple machine learning techniques and 

hyperparameters were investigated in order to discover 

the best prediction models. The parameters that have 

been used to train the ML model for predicting the tool 

wear and RUL has been depicted in the Table 2. The 

comparisons of these algorithms is presented in the next 

section using three different evaluation metrics. 

 

Table 2. Parameter settings for training different ML algorithms 
Algorithms Tool wear RUL 

LR Default Default 

SVR kernel='rbf‘, C =2 kernel='rbf' 

DT Default Default 

RF n_estimators = 30 n_estimators = 30 

XGBoost 
n_estimators=200, max_depth=7, eta=0.05, 

subsample=0.4, colsample_bytree=0.8 

n_estimators=400, max_depth= 4, eta=0.1, 

subsample=0.8, colsample_bytree=0.9 

MLP Default max_iter=8000 

 

4. RESULTS AND DISCUSSION 
 

After training the ML model, their performance need to 

be tested. This is done using the 𝑅2 (R- squared), called 

as the coefficient of determination, root mean square 

error (RMSE) and mean absolute error (MAE), have been 

selected as shown in Table 3 (for tool wear) and Table 4 

(for RUL). 

 

The coefficient of determination (𝑅2) indicates that the 

percentage of the variation in response variable that is 

explained by a regression model. If R2 value is greater, it 

shows that the regression model explains more 

variability. An R of 100% or R2 score of one, for 

example, means that the regression model build for fully 

explains all variation in the response data around its 

mean. Better the regression model fits the data, the 

greater the R2. (Draper & Smith, 2014). MAE measures 

the average of the difference between the predicted value  

from the actual value (Chai & Draxler, 2014) smaller the 

MAE better the model predictions. The RMSE 

(Hyndman & Koehler, 2006) measures the standard 

deviation of the predicted errors. For prediction to be 

more accurate, RMSE should be close to zero. 

 

The ML algorithms use 70% of the input data for training 

or model development and uses the remaining data set, 

30% for testing or model validation. Tables below list the 

RMSE, R-squared and MAE for the predictive models 

trained by the LR, SRV, DT, RF XGBoost and MLP 

regressor. 

 

4.1 Tool wear prediction VB 

 

In addition to R2, MAE, RMSE we have also consider 

the time taken (in second) to train and to make prediction 

for the unseen data, to compare all the six ML algorithms. 

For flank wear prediction the comparison is shown in 

Table 3. 

 

Table 3. Comparison of various ML algorithms for 

predicting tool wear 
Algorithm R2  MAE RMSE 

LR 0.8347 0.0795 0.1193 

SVR 0.7377 0.0978 0.1338 

DT 0.7330 0.1107 0.1471 

RF 0.7297 0.0990 0.0184 

XGB 0.8624 0.0663 0.0789 

MLP 0.7593 0.0962 0.1282 

 

As a result of comparison, the best performing algorithm 

comes out XGBoost with maximum R2 of 0.8624 and the 

minimum 0.7297 R2 obtained for RF and is close to DT 

and SVR. The time taken for training and prediction for 
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the case of RF is 0.045 second. Thus after building ML 

model using various regression algorithms XGBoost 

outperforms all the algorithms. XGBoost is able to fit 

with the data well as compared with the other algorithms. 

The time taken for training and making the prediction 

using XGBoost comes out 0.2525 second. 

 

4.2 Remaining useful life (RUL) 
 

Similar to the metrics for comparing the performances of 

ML algorithm for predicting flank wear the same 

evaluation metrics are used for comparing algorithms 

performances for predicting remaining useful life as 

shown in the Table 4. From the table it is observed that 

XGBoost outperforms among all the other algorithms 

with the highest R2 score. 

 

Table 4. Comparison of various ML algorithms for 

predicting RUL 
Algorithm R2 MAE RMSE 

LR 0.7581 2.0270 2.6540 

SVR 0.7108 1.7388 2.2666 

DT 0.5167 3.1034 4.0684 

RF 0.6494 2.3345 3.0248 

XGB 0.7860 1.8793 2.3632 

MLP 0.5822 2.4543 3.1676 

 

After evaluations from the Table 4, the best results for 

RUL calculation comes out 0.786 R2 for XGBoost with 

a training and prediction time of 0.3995 second. The 

minimum R2 0.516 is obtained for DT with a time of 

0.0040 second. Again XGBoost outperform as compared 

to remaining five ML algorithms.  

 

From the plots it can be seen that the level of flank wear 

increases gradually for each cases. The unit of flank wear 

has been taken in mm. For the Figure 6 has six sub figures 

from (a) to (f) which represents the plot of comparison 

for actual flank wear and predicted flank wear (a) using 

XGBoost, (b) using DT, (c) using LR, (d) using MLP, (e) 

using RF and (f) using SVR respectively. In order to 

compare in between the figures, the plot in which the 

predicted values are close to the actual value can be taken 

as a better fit as compared to the others because in that 

case the actual values and the predicted values are 

comparable. 

 

In general, the algorithm which is having a better R2 

score have better fit in the plot as which is evident in this 

study. When all the figures are compared with each other 

it is clear that XGBoost is outperforming among all the 

other algorithms because it is fitting better and have the 

highest R2 score when compared with others. 

 

In Figure 6 the graph has been plotted with all the data 

points on the x-axis. The total number of data points are 

145. The number of runs in the y- axis. From the plots it 

can be seen that the RUL decreases gradually for each 

cases. Again on comparing all the plots with each other it 

is clear that XGBoost is outperforming again among all 

the other algorithms for predicting the RUL because it is 

fitting better and have the highest R2 score when 

compared with others. 

 

 

 

 
Figure 6. Comparison of predicted flank wear vs actual 

flank wear 
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5. CONCLUSIONS 
 

In this paper a framework has been proposed for 

predictive maintenance using machine learning 

algorithm. The proposed framework can be used and 

applied in the similar manufacturing domain or the 

processes which utilizes the sensors for collecting data. 

The output of the framework results in predicting RUL 

and tool wear during the milling operations using the ML 

algorithms which are widely used in the literature, which 

includes LR, DT, RF, SVR, XGboost and MLP. In order 

to evaluate the performance of these selected six ML 

algorithms, each algorithm is separately trained and 

tested on the dataset gathered from a milling experiment.  

 

The metrics used for benchmarking the performances of 

ML algorithms include r-squared, mean absolute error 

and root mean squared error. From all three sensors i.e. 

current, vibration, and acoustic emissions sensors, the 

features based on time domain were extracted. The 

experimental results, for the case of tool wear prediction 

have shown that on the particular dataset using XGboost, 

generates more accurate predictions than the other 

algorithms. The main contribution of this paper can be 

understood in two ways, firstly we demonstrated that the 

predictive model trained by XGBoost can predict tool 

wear in milling operations with better results (R2 = 

0.8624, MAE =0.0663, RMSE = 0.0789 and time = 

0.2525 sec) while using time domain features only and 

secondly the RUL calculation we compared the 

performance of the all the taken ML algorithms, and 

observed that XGBoost again outperform in our case (R2 

= 0.786, MAE =1.8793, RMSE = 2.3632 and time = 

0.3995 sec), but this time the training and prediction time 

is greater than that was in the case of flank wear.  

 

In the future, a comparison of the performances of the six 

ML algorithms considered in our study with that of other 

types of neural network, such as recurrent neural 

networks, could be conducted. In addition to future work 

will focus on deploying the ML model into action so that 

it can be applied to large-scale and real-time prognosis. 

In our study we limit our work to estimate the tool 

conditions i.e. flank wear and RUL both covers the 

regression problem. 
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Appendix  

 

Table A1. Table for selected features for tool wear 
Features Description 

u_b Mean of Direct current reading from the spindle 

rm_b RMS of Direct current reading from the spindle 

sd_a Standard deviation of Alternating current reading from the spindle 

rm_a RMS of Alternating current reading from the spindle 

ma_b Maximum of Direct current reading from the spindle 

peak_b Peak-to-Peak of Direct current reading from the spindle 

run Counts the number of runs for which the tool has been used for machining 

mini_a Minimum of Alternating current reading from the spindle 

peak_a Peak-to-Peak of Alternating current reading from the spindle 

ma_a Maximum of Alternating current reading from the spindle 

crestFactor_a Crest factor of Alternating current reading from the spindle 

ma_e Maximum of Acoustic emission generated from the table 

peak_e Acoustic emission generated from the table 

ma_f Maximum of Acoustic emission generated from the spindle 

sd_b Standard deviation of Direct current reading from the spindle 

peak_f Peak-to-Peak of Acoustic emission generated from the spindle 

time Time duration of each run of experiment and it restart from zero for each new case 

rm_e RMS of Acoustic emission generated from the table 

mini_d Minimum of Vibration signal generated from the spindle 

u_e Mean of Acoustic emission generated from the table 

 

Table A 2. Table for selected features for RUL 
Features Description 

u_b Mean of Direct current reading from the spindle 

rm_b RMS of Direct current reading from the spindle 

peak_b Peak-to-Peak of Direct current reading from the spindle 

ma_b Maximum of Direct current reading from the spindle 

sd_a Alternating current reading from the spindle 

rm_a RMS of Alternating current reading from the spindle 

ma_a Maximum of Alternating current reading from the spindle 

peak_a Peak-to-Peak of Alternating current reading from the spindle 

mini_a Minimum of Alternating current reading from the spindle 

sd_b Standard deviation of Direct current reading from the spindle 

crestFactor_a Crest factor of Alternating current reading from the spindle 

u_a Mean of Alternating current reading from the spindle 

peak_e Peak-to-Peak of Acoustic emission generated from the table 

ma_e Maximum of Acoustic emission generated from the table 

ku_c Kurtosis of Vibration signal generated from the table 

mini_d Minimum of Vibration signal generated from the spindle 

peak_f Peak-to-Peak of Acoustic emission generated from the spindle 

ma_f Maximum of Acoustic emission generated from the spindle 

run Counts the number of runs for which the tool has been used for machining 

sd_e Standard deviation of Acoustic emission generated from the table 

 

 

 


