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A B S T R A C T 

The process capability index (Cp) measures the amount of dispersion a process 

involves relative to the limits of specification. This paper considers sixteen 

different available confidence intervals for estimating the population process 

capability index. A simulation study under different conditions has been 

conducted to compare the performance of the estimators. Our vast simulation 

records reveal that both augmented large sample (ALS) and modified 

augmented large sample (MALS) intervals have better coverage probability 

and shorter average width in all simulation conditions. We expect that the 

results of this paper will contribute to the literature on process capability and 

will guide the researchers to select an interval estimator when they are 

interested to estimate the population process capability index. 

© 2023 Published by Faculty of Engineering  

 

 

 

 

1. INTRODUCTION 
 

The purpose of many manufacturing industries is to 

monitor and control the statistical processes. One of the 

important tools is the process capability index. Recently, 

statistical inference of this index has drawn considerable 

attention to the theoretical as well as the applied 

researchers. It is a convenient measure because it reduces 

complex information about a process to a single number 

(Maiti and Saha (2012)). For example, if the value of the 

process capability index surpasses one, it implies that the 

process is acceptable or capable. A process capability 

index uses both the process variability and the process 

specifications to decide whether the process is capable. 

This index equates the output of an in-control procedure 

to the specification limits using capability indices. The 

comparison is made by forming the ratio of the spread 

between the process specifications to the spread of the 

process values, as measured by six standard deviation 

units, known as the process width. We are often required 

to compare the output of a stable process with the process 

specification and make a statement about how well the 

process meets the specification. To do this, we compare 

the natural variability of a stable process with the process 

specification limits. There are various process capability 

indices exist in the literature. The most commonly 

applied index is Cp (Kane, 1986, Zhang, 2010). In this 

paper, we focus only on the process capability index Cp, 

defined by Kane (1986) as, 

 

Cp= (USL-LSL)/6σ   (1.1) 

 

where USL is the upper specification limit, LSL is the 

lower specification limit and  is the process standard 

deviation. The numerator of Cp gives the size of the range 

over which the process measurements can vary. The 

denominator gives the size of the range over which the 

process actually varies (Kotz and Lovelace (1998)). Due 

to the fact that the process standard deviation is unknown, 

it must be estimated from the sample data. The sample 
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standard deviation S is used to estimate the unknown 

parameter σ in the above equation. The estimator of the 

process capability index Cp is therefore defined as, 

 

C ̂p= (USL-LSL)/6S (1.2) 

 

Although the point estimator of the capability index Cp 

shown in the above equation can be a useful measure, it 

varies from sample to sample. In this case, the confidence 

interval is a more useful method because it provides 

much more information about the population 

characteristic of interest than does a point estimate (e.g. 

Smithson (2001); Thompson (2002); Steiger (2004)). 

The confidence interval for the capability index Cp is 

constructed by using a pivotal quantity Q that follows a 

chi-square distribution when the data is normally 

distributed. When the data is normally distributed, the 

coverage probability of this confidence interval is close 

to a nominal value of 1- . However, the underlying 

process distributions are not normal in many industrial 

processes (e.g., Chen and Pearn (1997); Bittanti and 

Moiraghi (1998); Wu and Messimer (1999); Ding 

(2004)). In these situations, the coverage probability of 

the confidence interval can be considerably below 1- . 

More on process capability indices we refer Kotz and 

Johnson (2002) and for confidence interval on Cp, we 

refer to Peng (2010), Abu-Shawiesh et al. (2020a,b), and 

Kibria and Chen (2021) and very recently Somkhueanl 

and Wongkhao (2022) among others.  

 

In this paper, we consider sixteen different available 

confidence intervals for estimating the population Cp. 

Since different researchers have considered different 

confidence intervals and compared them under different 

simulation conditions, the performance of these interval 

estimators is not comparable as a whole. The objective of 

this paper is to compare all sixteen interval estimators 

under the same simulation condition and compare their 

performances. Using a simulation study, we want to 

recommend some good interval estimators for Cp under 

both skewed and symmetric distribution conditions. 

More on confidence interval and simulation study, we 

refer to George and Kibria (2011), Banik and Kibria 

(2016) and Abu-Shawiesh et al (2018) among others, The 

structure of the paper is as follows. In Section 2, we 

review and propose various confidence intervals for the 

process capability index. Simulations are undertaken in 

section 3 to see how the confidence intervals perform 

under different conditions. Conclusions are presented in 

the final Section 4. 

 

2. STATISTICAL METHODOLOGY 
 

2.1 Classical confidence interval 
 

Suppose ),(N~X,...,X,X 2

n21  , then a (1-

)100% classical confidence interval (CI) for Cp is 

constructed using a pivotal quantity: 
22S)1n(Q −= and is given as follows: 
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quantiles of the central chi-squared distribution with n-1 

degrees of freedom respectively.  

 

The CI for Cp in (2.1) is to be used for normal distribution 

data. When the data have normally distributed the CI in 

(2.1) is close to a nominal value. However, the 

underlying process distributions are non-normal in many 

industrial processes (see e.g., Chen and Pearn (1997), 

Bittanti and Moiraghi (1998), Wu and Messimer (1999), 

Ding (2004) and others). In these situations, the coverage 

probability of CI can be below the nominal level. 

Balamurali and Kalyanasundaram (2002) found that for 

non-normal data the bootstrap method can help to 

improve CI for Cp. The aim of this paper is to review and 

propose some new CIs for Cp that is based on different 

robust estimators of the scale parameter σ. 

 

The robust methods are one of the most commonly used 

statistical methods when the underlying normality 

assumption is violated. These methods offer a useful and 

viable alternative to traditional statistical methods and 

can provide more accurate results (Abu-Shawiesh, 2008). 

A robust estimator is one that is resistant to departures 

from normality and the presence of outliers. Also, an 

estimator is said to be robust if it is fully efficient or 

nearly so for an assumed distribution but maintains high 

efficiency for plausible alternatives (Tiku and Akkaya, 

2004). Now, we will review and propose some modified 

CIs for estimating Cp for non-normal distributions based 

on the robust methods as follows:  

 

2.2 CI based on Sps 
 

Sps is based on the interquartile range (IQR) and is 

defined as follows: 

349.1

IQR
Sps=  

(2.2) 

A (1-)100% CI for Cp based on Sps is defined as 
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where 
2

1,
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
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  are α/2th and 1− α/2th 

quintiles of the chi-squared distribution with n-1 df. 

 

2.3 CI based on AADM 
 

The average absolute deviation from the median 

(AADM) is a very robust scale estimator that measures 

the deviation of the data from MD, which is less 

influenced by outliers. It is defined as follows: 

 


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−


=
n

1i

i MDX
n

2
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(2.4)

 

 

MD is best known for being insensitive to outliers and 

has a maximal 50% breakdown point (Rousseeuw and 

Croux, 1993). As stated in Gastwirth (1982), AADM is a 

consistent estimate of  and is asymptotically normally 

distributed. A (1-)100%
 
CI based on AADM is defined 

as 
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2.4 CI based on MAD  
 

The MAD was first introduced by Hampel (1974) 

and is widely used in various applications as an 

alternative to S. MAD for a random sample is 

defined as follows: 

 

 

𝑀𝐴𝐷 = 1.4826𝑀𝐷{|𝑋𝑖 − 𝑀𝐷|}, 𝑖
= 1,2,3, . . . , 𝑛 

(2.6) 

 

The 1.4826 factor given in MAD adjusts the scale 

for maximum efficiency when the data comes from 

a normal distribution. A %100)1( − CI based on 

MAD is defined as 
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2.5 CI based on GMD 
 

The GMD was developed by the Italian mathematician 

Professor Corrado Gini (Gini, 1912) for measuring the 

variability of non-normal data. It is defined as follows: 
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(2.8) 

The GMD is more efficient than S if the normal 

distribution is contaminated by a small fraction 

(Gerstenberger and Vogel, 2014). A %100)1( − CI for 

on GMD is defined as  
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quintiles of the chi-squared distribution with n-1 df. 

 

2.6 CI based on Sn 
 

The Sn estimator was proposed by Rousseeuw and Croux 

(1993) and is defined as follows:  

 

𝑆𝑛 = 1.1926𝑀𝐷𝑖{𝑀𝐷𝑗|𝑋𝑖 − 𝑋𝑗|}, 𝑖 = 1,2,3, . . . , 𝑛, 𝑗 =

1,2,3, . . . , 𝑛 (2.10) 

A %100)1( − CI based on Sn is defined as 
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2.7 CI based on degrees of freedom (DF) 
 

Hummel and Hettmansperger (2005) proposed an 

estimate for the degrees of freedom using the method of 

matching. It depends on the fact that the sample variance 

is a sum of squares and, for sufficiently large samples, is 

approximated as a chi-square estimate with the 

appropriate degrees of freedom. They matched the first 

two moments of the distribution of sample variance with 
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that of a random variable X, which is distributed as c
𝑟
2. 

The solution for r and c is solved using the following 

systems of equations: 1) 2 = cr and 2) 
𝜎4

𝑛
( −

𝑛−3

𝑛−1
)=2rc2 

, where  is the kurtosis of the distribution.  

 

A (1-)100% CI for the Cp based on the CI for variance 

by adjusting the degrees of freedom of the Chi-square 

distribution is given by  
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2
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squared distribution with n-1 df.  

 

2.8 CI based on the large sample theory (LS) 
 

If the normality assumption is invalid, then one can 

use the large sample theory, where S2 ~ 

N(2,
𝜎4

𝑛
(𝑒 +

2𝑛

𝑛−1
 )) , 𝑒 is the excess kurtosis 

and defined as κ-3. 

 

A (1-)100% CI for the Cp based on the large 

sample confidence interval for variance is  
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𝑋)̅̅ ̅4 and 𝑚2 = 𝑛−1 ∑ (𝑋𝑖 − 𝑋)̅̅ ̅2𝑛
𝑖=1 . For critical 

value of the test statistic, see the standard Z table. 
 

2.9 CI based on the augmented large sample 

theory (ALS) 
 

Burch (2014) considered a modification to the 

approximate distribution of log(S) by using a three-term 

Taylor’s series expansion. Employing the large sample 

properties of S2, and following Burch (2014), a (1-

)100% confidence interval for the Cp based on the 

augmented large sample confidence interval for variance 

is given by 
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̂𝑒,5 = (
𝑛+1

𝑛−1
) 𝐺2(1 +

5𝐺2

𝑛
). For the critical value of the 

test statistic, see the standard Z table. 

 

2.10 CI based on Trimmed Standard 

Deviation (ST) 
 

The sample mean and the sample variation can be 

influenced by the outliers or extreme values of the 

distribution. To overcome the extreme value 

problem, the trimmed technique is very useful 

(Burch (2014), Tukey (1948), and Dixon and Yuen 

(1974) among others). To modify the variance of the 

trimmed mean, Sindhumol et al. (2016) 

recommended an amendment, which is multiplying 

the variance of the trimmed mean with a fine-tuning 

constant. This technique can be described as 

follows: Consider Xi ~ N(,2), i=1,2,…,n. Assume 

that the order statistics of the above random samples 

is denoted by 𝑋(1) ≤ 𝑋(2) ≤ . . . ≤ 𝑋(𝑛). Then the r-

times symmetrically trimmed sample is obtained by 

reducing both bottom-most and uppermost 𝑟 values. 

Then the trimmed sample mean and the trimmed 

sample standard deviation is defined respectively as 

follows: 
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1
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where 𝑟 =  [𝛼𝑛], trimming is done for α% (0 ≤ α ≤ 

0.5) of 𝑛. The modified trimmed standard deviation, 

suggested by Sindhumol et al. (2016)) and is 

defined as follows: S*
T= 1.4826ST (For details, see 

Abu-Shawiesh et al. (2020a, b)). 
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where 
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The CI for Cp shown above is to be used where 

𝐶̂𝑝
∗ =

USL − LSL

6 𝑆𝑇
∗  is the sample estimate of population 

Cp.  
 

2.11 CI based on IQR 
 

measures based on 𝐼𝑄𝑅 is given by  

LCL = 𝐶𝑝
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where 𝐶𝑝
𝐼𝑄𝑅 =

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝑆𝐼𝑄𝑅
 is the modified sample 

estimate of population Cp and SIQR = IQR/1.349. 
 

2.12 Modified Classical Intervals (MDF) 
 

The (1-)100% confidence interval for the Cp measures 

based on 𝑆𝑀 is given by  

LCL = 𝐶𝑝
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where 𝐶𝑝
𝑀= 

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝑀
 and SM is defined as follows 

𝑆𝑀 = √
∑ (𝑋𝑖 − 𝑀𝑑)2𝑛

𝑖=1

𝑛 − 1
 

(2.18) 

where Md is the median of the observations of X1, 

X2,…., Xn.  

 

2.13 Modified interval based on adjusted 

degrees of freedom (MDF) 
 

The (1-)100% confidence interval for the Cp measures 

based on 𝑆𝑀 is given by  

LCL =𝐶𝑝
𝑀√

𝛼 2,(𝑟−1)⁄
2

𝑟̂
 and  

UCL = 𝐶𝑝
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, (2.19) 

where 𝐶𝑝
𝑀= 

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝑀
 (see Kibria and Chen, 2021). 

 

2.14 Modified interval based on the large 

sample theory (MLS) 
 

The (1-)100% confidence interval for the Cp measures 

based on 𝑆𝑀 is given by  

LCL = 
𝐶𝑝
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where 𝐶𝑝
𝑀= 
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6𝑆𝑀
. and 𝑍1−𝛼

2
 is the (1 − 𝛼

2
) percentile of 

a standard normal distribution (see Kibria and Chen, 

2021). 

 

2.15 Modified interval based on the large 

sample theory (MLS) 
 

The (1-)100% confidence interval for the Cp measures 

based on 𝑆𝑀 is given by  

LCL = 
𝐶𝑝

𝑀

√exp (𝑍
1−

𝛼
2

√𝐵+𝐶)
 and  

UCL = 
𝐶𝑝

𝑀

√exp(−𝑍
1−

𝛼
2

√𝐴)+𝐶

  (2.21) 

 

where 𝐶𝑝
𝑀= 

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝑀
 (see Kibria and Chen, 2021). 

 

2.16 Bootstrap approach (Boot) 
 

Bootstrap is a frequently used non-parametric approach 

(Efron (1979)), which involves no assumptions about the 

primary population and can be applied to a range of 

situations. The accuracy of the bootstrap statistic relies 

on the number of bootstrap samples. If the number of 

bootstrap samples is large enough, the estimate may be 

precise. A bootstrap method is summarized as follows: 

Let X(*) =
(*)
1X , 

(*)
2X , …, 

(*)
nX , where the ith sample is 

denoted X(i) for i=1,2 ,…, B, and B are the number of 

bootstrap samples. The number of bootstrap samples is 

naturally between 1000 and 2000. The (1-)100% 

bootstrap version confidence interval for the Cp is given 

by  

 

LCL = 𝑐𝑝√
𝑆2√2(𝑛−1)

2𝑡𝛼
2

∗ +√2(𝑛−1)
 and 

UCL = 𝑐𝑝√
𝑆2√2(𝑛−1)

2𝑡
1−

𝛼
2

∗ +√2(𝑛−1)
  (2.22) 

 

where 𝑡𝛼
2

∗ and 𝑡
1−

𝛼
2

∗  are the (/2)100th and 1- (/2)100th 

percentiles of the following statistic, 𝑇∗ =
𝑆∗2

− 𝑆2

√𝑣𝑎𝑟̂(𝑆∗2
)
, 

where 𝑠∗2
 is a bootstrap replication of the statistic  𝑠2, 

𝑣𝑎𝑟̂(𝑠∗2
) =

1

𝑛
(𝜇̂4

∗ −
𝑛−3

𝑛−1
𝑠∗4

) and 𝜇̂4
∗  = 

1

𝑚
∑ (𝑋𝑖

∗ −𝑚
𝑖=1

𝑋̅∗)4. For details, see Panichkitkosolkul (2014). 
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3. SIMULATION STUDY 
 

3.1. Simulation Design 
 

The main objective of this paper is to find some good 

confidence interval estimators for estimating the 

population Cp. Since a theoretical comparison among the 

interval estimators is not possible, a simulation study has 

been made to compare the performances of the interval 

estimators under both symmetric and non-symmetric 

distributions, which are listed below.  

• Standard normal distribution, N(50,1) with 

skewness 0 

• Chi-Square distribution with 1 df with 

skewness 2.828, right skewed 

• Chi-Square distribution with 3 df with 

skewness 1.633, right skewed 

• t distribution with 5 df, t(5) with skewness 0  

• Beta (4,1) distribution with skewness = - 1.05, 

left skewed 

• Beta (10,1) distribution, with skewness = - 1.52, 

left skewed  

 

The following LSL and USL were used to computer Cp. 

• N(50,1): LSL = 47 and USL = 53 

• Chi(1): LSL = -3.2426 and USL = 5.2426 

• Chi(3): LSL = -4.3484 and USL = 10.348 

• t(5): LSL = -3.8729 and USL = 3.8729 

• B(4,1): LSL = 0.32 and USL = 1.28 

• B(10,1): LSL = 0.654 and USL = 1.146 

 

MATLAB R2018a programming language is used for all 

types of calculations. The number of simulation 

replications was 50000 for each case. Random samples 

were generated from each of the above-mentioned 

distributions for sample sizes, n=20, 30, 50, 70, 100 and 

150 and B=5000, bootstrap samples. The most common 

95% confidence interval is used to measure the 

confidence level. Results are tabulated in Tables 3.1 a,b 

to Tables 3.6 a,b for N(50,1), Chi-square with 1 DF, Chi-

square with 3 DF, t with 5 DF, Beta (4,1) and Beta (10,1) 

distributions respectively.  

 

3.2. Results and Discussions 
 

In Tables 1 and 2, we reported coverage probabilities and 

average widths for all confidence intervals when data are 

generated from the N(50,1) distribution. For a better 

understanding, we presented them in Figures 1 and 2. For 

the brevity, we will discuss only two extreme cases (n=20 

and 150) in this section. From Table 1 and Figure 1, it 

appear that for small sample size (20), the classical 

interval, AADM, ALS. Mchi, and MALS have high 

coverage probabilities compared to other CIs. However, 

Table 2 and Figure 2 indicate that ALS, and MALS have 

smaller average width compared to other CIs. We found 

that the ALS performed the best in terms of coverage 

probability and average width, followed by MALS, DF, 

LS, and MDF. For sample size (150), the classical 

interval, AADM, ALS. Mchi, and MALS have high 

coverage probabilities compared to the rest of the 

intervals. However, Table 2 and Figure 2 show that ALS 

and MALS have smaller average width compared to 

other CIs. We found that the ALS performed the best in 

terms of coverage probability and average width, 

followed by the MALS interval. The classical, AAMD 

and Mchi performed equivalently well. When data are 

from a normal population, both ALS and MALS are 

highly recommended to estimate the population Cp by 

the confidence interval. 

 

Table 1. Coverage probability when data are generated from the N(50,1) distribution with skewness 0 
   Sample  

sizes 

   

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.9479 0.9492 0.9505 0.9498 0.9493 0.9499 

Sps 0.7668 0.7786 0.7721 0.7719 0.7733 0.8059 

AADM 0.9359 0.9355 0.9351 0.9350 0.9328 0.9332 

MAD 0.7799 0.7784 0.7714 0.7717 0.7683 0.7679 

GMD 0.4174 0.5560 0.7250 0.6547 0.7976 0.8374 

Sn 0.8454 0.8551 0.8618 0.8642 0.8617 0.8676 

DF 0.8715 0.8784 0.8863 0.8888 0.8617 0.8950 

LS 0.8712 0.8769 0.8841 0.8878 0.8883 0.8938 

ALS 0.9862 0.9880 0.9890 0.9892 0.9887 0.9900 

ST 0.7033 0.7708 0.7985 0.8551 0.8433 0.8687 

IQR 0.7890 0.7660 0.7702 0.7703 0.7684 0.7659 

Mchi 0.9443 0.9466 0.9489 0.9490 0.9486 0.9489 

MDF 0.8657 0.8747 0.8832 0.8866 0.8904 0.8936 

MLS 0.8718 0.8774 0.8849 0.8878 0.8883 0.8942 

MALS 0.9861 0.9886 0.9891 0.9894 0.9889 0.9898 

Boot 0.8167 0.7953 0.9151 0.9503 0.8339 0.8324 
Notes: C - Classical approach, Sps - Sps approach, AADM - AADM approach, MAD - MAD approach, GMD - GMD approach, Sn – Sn approach, DF 
- DF approach, LS - LS approach, ALS – ALS approach, ST – ST approach, IQR – IQR approach, Mchi – Mchi approach, MDF- MDF approach, MLS 

– MLS approach, MALS – MALS approach and Boot - Bootstrap -approach 
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Table 2. Average widths when data are generated from the N(50,1) distribution with skewness 0  
   Sample  

sizes 

   

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.6565 0.5257 0.4008 0.3365 0.2804 0.2280 

Sps  0.6797 0.5410 0.4079 0.3404 0.2827 0.2293 

AADM 0.6762 0.5361 0.4056 0.3393 0.2821 0.2290 

MAD 0.7083 0.5513 0.4125 0.3432 0.2844 0.2301 

GMD 0.5746 0.4620 0.3535 0.2972 0.2479 0.2018 

Sn 0.6488 0.5195 0.3977 0.3346 0.2793 0.2275 

DF 0.5387 0.4336 0.3328 0.2799 0.2793 0.1907 

LS 0.5576 0.4421 0.3361 0.2817 0.2349 0.1912 

ALS 0.4534 0.2926 0.1711 0.1208 0.0839 0.0556 

ST 0.5421 0.4652 0.3496 0.2917 0.2376 0.1962 

IQR 0.6238 0.5074 0.3925 0.3320 0.2773 0.2264 

Mchi 0.6488 0.5213 0.3987 0.3352 0.2796 0.2276 

MDF 0.5325 0.4301 0.3311 0.2788 0.2333 0.1903 

MLS 0.5512 0.4385 0.3343 0.2806 0.2338 0.1908 

MALS 0.4481 0.2902 0.1702 0.1203 0.0837 0.0555 

Boot 0.5378 0.3727 0.3874 0.3634 0.2055 0.1640 

 

 
Figure 1. Coverage Probability for all selected tests when data generated from the standard normal distribution N(50,1) 

 

 
 

Figure 2. Average width for all selected tests when data generated from the standard normal distribution N(50,1) 

 

In Tables 3 and 4, we have reported the coverage 

probabilities and average widths for all confidence 

intervals when data are generated from the Chi-square 

distribution with 1 DF. From Table 3 and Figure 3, it 

appear that for small sample size (20), DF, ALS, MDF, 

MLS and MALS have higher coverage probabilities 

compared to the rest of the intervals. However, Table 4 

and Figure 4 indicates that ALS and MALS have smaller 

average widths compared to other CIs. We found that the 

ALS performed the best in terms of coverage probability 

and average width, followed by MALS, MDF and MLS.  

For large sample size (150), the classical interval, DF, 

LS, ALS, MDF, MLS, MALS and Boot have high 

coverage probabilities compared to the rest of the 

intervals. However, Table 4 and Figure 4 indicate that 

ALS and MALS have smaller average width compared to 

other CIs. We found that the MALS performed the best 

in terms of coverage probability and average width, 
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followed by ALS and Boot intervals. When data are from 

a highly positive skewed distributions both ALS and 

MALS are highly recommended to estimate the 

population Cp by confidence interval. 

 

Table 3. Coverage probability of selected confidence interval when data are generated from the Chi-square distribution 

with df 1 and skewness 2.828 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.6082 0.5867 0.5742 0.5644 0.5582 0.5564 

Sps 0.5808 0.5811 0.5914 0.6029 0.6184 0.6232 

AADM 0.6220 0.6357 0.6585 0.6736 0.6904 0.6925 

MAD 0.6218 0.6317 0.6413 0.6424 0.6502 0.6665 

GMD 0.6519 0.6657 0.6759 0.6803 0.6960 0.6958 

Sn 0.5212 0.5543 0.5566 0.5808 0.5900 0.6011 

DF 0.7141 0.7434 0.7566 0.7912 0.8112 0.8305 

LS 0.6887 0.7215 0.7749 0.7813 0.8034 0.8237 

ALS 0.7652 0.7974 0.7608 0.8477 0.8660 0.8818 

ST 0.6263 0.6893 0.7010 0.7168 0.7335 0.7564 

IQR 0.5404 0.5533 0.5803 0.5849 0.6373 0.6580 

Mchi 0.6093 0.5877 0.5932 0.6085 0.6123 0.6386 

MDF 0.7273 0.7556 0.7692 0.8006 0.8290 0.8411 

MLS 0.7028 0.7388 0.7641 0.7985 0.8132 0.8269 

MALS 0.7698 0.7984 0.8261 0.8477 0.8754 0.8980 

Boot 0.5344 0.5148 0.7768 0.6963 0.8384  0.9659 

 

Table 4. Average width of selected confidence interval when data are generated from the Chi-square distribution with df 

1 and skewness 2.828 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.7816 0..5946 0.4331 0.3566 0.2921 0.2348 

Sps  1.1389 0.8916 0.6573 0.5439 0.4480 0.3618 

AADM 0.9582 1.3613 0.5492 0.4560 0.3765 0.3044 

MAD 1.8159 0.6149 0.9860 0.8086 0.6624 0.5326 

GMD 0.7877 1.4567 0.4589 0.3821 0.3161 0.2560 

Sn 1.8492 1.1134 1.0724 0.8919 0.7392 0.5997 

DF 0.9870 0.8317 1.0724 0.5912 0.5135 0.4347 

LS 1.0264 0.8556 0.6761 0.6008 0.5201 0.4388 

ALS 0.7793 0.5624 0.6900 0.2877 0.2160 0.1532 

ST 0.7364 0.6331 0.3762 0.3794 0.3028 0.2510 

IQR 0.5864 0.4694 0.4605 0.3035 0.2532 0.2060 

Mchi 0.7286 0.5539 0.3607 0.3321 0.2721 0.2188 

MDF 0.9214 0.7762 0.4033 0.5517 0.4793 0.4058 

MLS 0.9584 0.7986 0.6310 0.5608 0.4856 0.4096 

MALS 0.7273 0.5251 0.3514 0.2688 0.2019 0.1431 

Boot 0.7613 0.4965 0.6344 0.4971 0.3966 0.3379 

  
Figure 3. Coverage Probability for all selected tests 

when data are generated from the Chi-square 

distribution with 1 df. 

Figure 4. Average width for all selected tests when data 

are generated from the Chi-square distribution with 1 df. 

 

0

0.2

0.4

0.6

0.8

1

n=20 n=30 n=50 n=70 n=100 n=150

0

0.5

1

1.5

2

C

Sp
s

A
A
D
M

M
A
D

G
M
D Sn D
F LS

A
LS ST

IQ
R

M
ch
i

M
D
F

M
LS

M
A
LS

B
o
o
t

n=20 n=30 n=50 n=70 n=100 n=150



Kibria & Banik, Estimation of population process capability index with confidence 

 23 

In Tables 5 and 6, we have reported the coverage 

probabilities and average widths for all confidence 

intervals when data are generated from the Chi-square 

distribution with 3 DF. From Table 5 and Figure 5, it 

appear that for small sample size (20), AAMD, GMD, 

ALS, and MALS have higher coverage probabilities 

compared to the rest of the intervals. However, Table 6 

and Figure 6 indicate that ALS and MALS have smaller 

average widths compared to other CIs. We found that the 

MALS performed the best in terms of coverage 

probability and average width, followed by ALS, GMD 

and AAMD intervals.  For large sample size (150), the 

Sps, AAMD, ALS, MLS, MALS and Boot intervals   

have high coverage probabilities compared to the rest of 

the intervals. However, Table 6 and Figure 6 indicate that 

ALS and MALS have smaller average width compared to 

other CIs. We found that the MALS performed the best 

in terms of coverage probability and average width, 

followed by ALS, Boot, AAMd and Sps intervals. When 

data are from a moderate positive skewed distributions 

both ALS and MALS are highly recommended to 

estimate the population Cp by confidence interval. 

 

Table 5. Coverage probability of selected confidence interval when data are generated from the Chi-square distribution 

with df 3 and skewness 1.6333 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.7521 0.7803 0.7977 0.8003 0.8197 0.8205 

Sps 0.7017 0.7525 0.8103 0.8652 0.8711 0.8909 

AADM 0.8057 0.8119 0.8479 0.8687 0.8704 0.8960 

MAD 0.6044 0.6496 0.6596 0.6756 0.6876 0.7261 

GMD 0.8165 0.8185 0.8195 0.8364 0.8476 0.8691  

Sn 0.6741 0.6929 0.7316 0.7508 0.7836 0.8381 

DF 0.7670 0.7901 0.8169 0.8294 0.8459 0.8539 

LS 0.7577 0.7804 0.8117 0.8233 0.8414 0.8514 

ALS 0.8963 0.9108 0.9239 0.9294 0.9366 0.9411 

ST 0.7326 0.7774 0.7975 0.8040 0.8438 0.8505 

IQR 0.6285 0.6515 0.6657 0.6706 0.6700 0.6812 

Mchi 0.7727 0.7921 0.8042 0.8119 0.8268 0.8618 

MDF 0.7705 0.8017 0.8263 0.8480 0.8503 0.8686 

MLS 0.7580 0.7983 0.8255 0.8386 0.8636 0.8907 

MALS 0.8986 0.9222 0.9351 0.9414 0.9470 0.9482 

Boot 0.6027 0.7246 0.8596 0.8529 0.8633 0.9490 

 

Table 6. Average width of selected confidence interval when data are generated from the Chi-square distribution with df 

3 and skewness 1.6333 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.6970 0.5482 0.4112 0.3432 0.2842 0.2302 

Sps  0.7895 0.6255 0.4682 0.3911 0.3235 0.2623 

AADM 0.7585 0.5970 0.4488 0.3751 0.3109 0.2522 

MAD 0.8902 0.6895 0.5114 0.4259 0.3516 0.2845 

GMD 0.6403 0.5103 0.3873 0.3251 0.2703 0.2198 

Sn 0.8386 0.6644 0.5019 0.4208 0.3494 0.2837 

DF 0.7048 0.5951 0.4818 0.4198 0.3605 0.3023 

LS 0.7282 0.6063 0.4868 0.4228 0.3623 0.3033 

ALS 0.5747 0.3969 0.2506 0.1852 0.1333 0.0915 

ST 0.5995 0.5140 0.3826 0.3186 0.2577 0.2131 

IQR 1.3479 1.0949 0.8465 0.7128 0.5966 0.4865 

Mchi 0.6739 0.5303 0.3979 0.3321 0.2751 0.2228 

MDF 0.6810  0.5754 0.4662 0.4062 0.3489 0.2927 

MLS 0.7037 0.5863 0.4710 0.4091 0.3506 0.2936 

MALS 0.5555 0.3838 0.2425 0.1792 0.1291 0.0885 

Boot 0.2509 0.2442 0.2403 0.1514  0.1273 0.1681 
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Figure 5. Coverage Probability for all selected tests 

when data are generated from the Chi-square 

distribution with 3 df. 

Figure 6. Average width for all selected tests when data 

are generated from the Chi-square distribution with 3 df. 

 

In Table 7 and Table 8, we have reported the coverage 

probabilities and average widths for all confidence 

intervals when data are generated from t-distribution with 

5 DF. From Table 7 and Figure 7, it appears that for small 

sample size (20), LS, ALS, MDF, MLS and MALS have 

higher coverage probabilities compared to the rest of the 

intervals. However, Table 8 and Figure 8 indicates that 

among these five intervals, ALS and MALS have smaller 

average widths. We found that the MALS performed the 

best in terms of coverage probability and average width, 

followed by ALS, MLS, MDF and LS. For large sample 

size (150), the DF, LS, ALS, MDF, MLS, MALS and 

Boot intervals have high coverage probabilities 

compared to the rest of the intervals. However, Table 

4.3b and Figure 4.3b indicates that among these 7 

intervals, ALS and MALS have smaller average width 

compared to other CIs. We found that the MALS 

performed the best in terms of coverage probability and 

average width, followed by ALS, Boot, MLS, LS, and DF 

intervals. When data are from a symmetric distribution 

both ALS and MALS are highly recommended to 

estimate the population Cp by a confidence interval. 

 

Table 7. Coverage probability of selected confidence intervals when data are generated from the t distribution with df 5 

and skewness 0 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.4595 0.4919 0.5262 0.5600 0.6190 0.6190 

Sps 0.5011 0.5111 0.5455 0.5744 0.6062 0.6762 

AADM 0.5115 0.5575 0.5736 0.5975 0.6189 0.6989 

MAD 0.4911 0.5100 0.5401 0.5932 0.6103 0.6903 

GMD 0.6637 0.6900 0.7062 0.7294 0.7562 0.7562 

Sn 0.5025 0.5236 0.5795 0.6080 0.6787 0.7387 

DF 0.6961 0.6993 0.7090 0.7267 0.7841 0.8041 

LS 0.7046 0.7148 0.7363 0.7603 0.7870 0.8070 

ALS 0.7634 0.7660 0.7695 0.7767 0.7859 0.8259 

ST 0.5507 0.5779 0.5897 0.6020 0.6524 0.7524 

IQR 0.4672 0.5559 0.6138 0.6600 0.7018 0.7018 

Mchi 0.4629 0.4949 0.5306 0.5669 0.6264 0.6264 

MDF 0.6984 0.7049 0.7337 0.7902 0.8296 0.8296 

MLS 0.7382 0.7391 0.7412 0.7859 0.8046 0.8546 

MALS 0.7663 0.7693 0.7741 0.7812 0.7910 0.8910 

Boot 0.6353 0.7392 0.7754 0.8144 0.8512 0.9512 
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Table 8. Average width of selected confidence interval when data are generated from the t distribution with df 5 and 

skewness 0 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.7767 0.6049 0.4481 0.3708 0.3037 0.2436 

Sps 0.7199 0.7178 0.5193 0.4184 0.3004 0.2403 

AADM 0.7705 0.6849 0.5147 0.4098 0.2557 0.2382 

MAD 1.0658 0.8339 0.6261 0.5225 0.4329 0.3508 

GMD 0.7127 0.5652 0.4273 0.3577 0.2964 0.2403 

Sn 0.9416 0.7536 0.5761 0.4847 0.4039 0.3288 

DF 0.8368 0.7139 0.5957 0.5328 0.4749 0.4182 

LS 0.8640 0.7300 0.6061 0.5411 0.4818 0.4237 

ALS 0.6717 0.4756 0.3204 0.2514 0.1971 0.1506 

ST 0.7354 0.6476 0.4852 0.4050 0.3267 0.2718 

IQR 0.7289 0.5867 0.4500 0.3890 0.2963 0.2277 

Mchi 0.7674 0.5998 0.4457 0.3693 0.3029 0.2432 

MDF 0.8267 0.7078 0.5925 0.5307 0.4735 0.4174 

MLS 0.8534 0.7237 0.6028 0.5390 0.4805 0.4229 

MALS 0.6636 0.4715 0.3187 0.2504 0.1965 0.1503 

Boot 0.6241 0.5813 0.2558 0.3768 0.5731 0.2451 

 

 
Figure 7. Coverage Probability for all selected tests 

when data are generated from the t distribution with 5 

df. 

Figure 8. Average width for all selected tests when data 

are generated from the t distribution with 5 df. 

 

In Table 9 and Table 10, we have reported the coverage 

probabilities and average widths for all confidence 

intervals when data are generated from a Beta (4,1) 

distribution with skewness -1.05. From Table 9 and 

Figure 8, it appears that for small sample size (20), 

Classical, AAMD, ALS, Mchi and MALS have higher 

coverage probabilities compared to the rest of the 

intervals. However, Table 10 and Figure 9 indicates that 

among these five intervals, ALS and MALS have smaller 

average widths. We found that the MALS performed the 

best in terms of coverage probability and average width, 

followed by ALS, Classical, Mchi and AADM. For large 

sample size (150), the Classical, AAMD, ALS, Mchi, 

MALS and Boot intervals have high coverage 

probabilities compared to the rest of the intervals. 

However, Table 4.3b and Figure 4.3b indicates that 

among these six intervals, ALS and MALS have smaller 

average width compared to other CIs. We found that the 

MALS performed the best in terms of coverage 

probability and average width, followed by ALS, Boot, 

Classical, Mchi and AADM intervals. When data are 

from a left symmetric distribution both ALS and MALS 

are highly recommended to estimate the population Cp 

by a confidence interval. In Tables 9 and 10, we have 

reported the coverage probabilities and average widths 

for all confidence intervals when data are generated from 

a Beta (4,1) distribution with skewness -1.05. From Table 

9 and Figure 9, it appear that for small sample size (20), 

Classical, AAMD, ALS, Mchi and MALS have higher 

coverage probabilities compared to the rest of the 

intervals. However, Table 10 and Figure 10 indicate that 

among these five intervals, ALS and MALS have smaller 

average widths. We found that the MALS performed the 

best in terms of coverage probability and average width, 

followed by ALS, Classical, Mchi and AADM.  For large 

sample size (150), the Classical, AAMD, ALS, Mchi, 

MALS and Boot intervals have high coverage 

probabilities compared to the rest of the intervals. 

However, Table 10 and Figure 10 indicate that among 

these six intervals, ALS and MALS have smaller average 

width compared to other CIs. We found that the MALS 

performed the best in terms of coverage probability and 
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average width, followed by ALS, Boot, Classical, Mchi 

and AADM intervals. When data are from a left 

symmetric distribution both ALS and MALS are highly 

recommended to estimate the population Cp by a 

confidence interval. 

 

Table 9. Coverage probability of selected confidence interval when data are generated from the Beta (4,1) 

distribution with skewness - 1.05 

   Sample  

sizes 

   

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.9543 0.9535 0.9532 0.9541 0.9535 0.9504 

Sps 0.6422 0.6876 0.7024 0.7215 0.7438 0.7727 

AADM 0.9182 0.9278 0.9298 0.9329 0.9365 0.9380 

MAD 0.7769 0.7699 0.7819 0.7920 0.8285 0.8413 

GMD 0.5149 0.5316 0.6309 0.6826 0.7719 0.8304 

Sn 0.8301 0.8363 0.8372 0.8374 0.8396 0.8409 

DF 0.8564 0.8635 0.8743 0.8785 0.8838 0.8819 

LS 0.8671 0.8690 0.8797 0.8834 0.8880 0.8864 

ALS 0.9874 0.9880 0.9895 0.9900 0.9915 0.9905 

ST 0.5980 0.6140 0.6446 0.6942 0.7038 0.7193 

IQR 0.3549 0.5116 0.6222 0.7021 0.7910 0.8299 

Mchi 0.9376 0.9377 0.9374 0.9367 0.9337 0.9466 

MDF 0.8352 0.8431 0.8511 0.8538 0.8547 0.8486 

MLS 0.8546 0.8562 0.8618 0.8645 0.8642 0.8880 

MALS 0.9855 0.9857 0.9856 0.9858 0.9867 0.9837 

Boot 0.7801 0.8032 0.8595 0.8791 0.8202 0.9044 

 

Table 10. Average width of selected confidence interval when data are generated from the Beta (4,1) distribution with 

skewness -1.05 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.6483 0.5201 0.3965 0.3330 0.2774 0.2255 

Sps 0.6405 0.5089 0.3828 0.3190 0.2645 0.2143 

AADM 0.6613 0.5249 0.3969 0.3319 0.2758 0.2237 

MAD 0.6806 0.5289 0.3942 0.3271 0.2709 0.2188 

GMD 0.5685 0.4581 0.3505 0.2947 0.2458 0.2000 

Sn 0.6388 0.5114 0.3908 0.3284 0.2741 0.2230 

DF 0.5152 0.4161 0.3197 0.2691 0.2247 0.1829 

LS 0.5355 0.4253 0.3232 0.2710 0.2258 0.1835 

ALS 0.4397 0.2843 0.1660 0.1171 0.0813 0.0537 

ST 0.5217 0.4451 0.3342 0.2788 0.2273 0.1872 

IQR 0.1048 0.0853 0.0662 0.0560 0.0469 0.0383 

Mchi 0.6365 0.5121 0.3914 0.3291 0.2743 0.2232 

MDF 0.5058 0.4097 0.3155 0.2659 0.2222 0.1810 

MLS 0.5257 0.4187 0.3190 0.2678 0.2233 0.1816 

MALS 0.4317 0.2799 0.1639 0.1157 0.0804 0.0532 

Boot 0.7395 0.6273 0.6606 0.6472 0.1601 0.1394 
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Figure 9. Coverage Probability when data are generated 

from the B(4,1) distribution 

Figure 10. Average width when data are generated from 

the B(4,1) distribution 

 

In Tables 11 and 12, we have reported the coverage 

probabilities and average widths for all confidence 

intervals when data are generated from a Beta (10,1) 

distribution with skewness -1.53. From Table 11 and 

Figure 11, it appear that for small sample size (20), ALS, 

Mchi, MALS and Boot have higher coverage 

probabilities compared to the rest of the intervals. 

However, Table 12 and Figure 12 indicate that among 

these three intervals, ALS and MALS have smaller 

average widths. For large sample size (150), the 

Classical, AAMD, ALS, ST, Mchi, MLS, MALS and 

Boot intervals have high coverage probabilities 

compared to the rest of the intervals. However, Table 12 

and Figure 12 indicate that among these eight intervals, 

ALS and MALS have smaller average width compared to 

other CIs. We found that the MALS performed the best 

in terms of coverage probability and average width, 

followed by ALS, Boot, MLS, Mchi, AADM and 

Classical intervals. When data are from a highly left 

symmetric distributions both ALS and MALS are highly 

recommended to estimate the population Cp by 

confidence interval. 

 

Table 11. Coverage probability of selected confidence interval when data are generated from the Beta (10, 1) distribution 

with skewness -1.53 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.4124 0.5657 0.6693 0.7432 0.8244 0.8609 

Sps 0.2405 0.3548 0.4428 0.5199 0.6069 0.6637 

AADM 0.4679 0.5286 0.6410 0.7266 0.8211 0.8627 

MAD 0.3094 0.4282 0.5112 0.5808 0.6622 0.7053 

GMD 0.3330 0.3654 0.4589 0.4805 0.6699 0.7244 

Sn 0.3742 0.4882 0.5627 0.6197 0.6867 0.7147 

DF 0.2870 0.4267 0.5329 0.6083 0.6989 0.7350 

LS 0.3161 0.4679 0.5779 0.6600 0.7529 0.7939 

ALS 0.6766 0.8102 0.8804 0.9230 0.9594 0.9742 

ST 0.5623 0.6131 0.6805 0.7244 0.7915 0.8307 

IQR 0.3594 0.4397 0.5376 0.5998 0.6829 0.7287 

Mchi 0.4498 0.5735 0.6713 0.7907 0.8402 0.8816 

MDF 0.2980 0.4735 0.5809 0.6583 0.7027 0.7938 

MLS 0.3644 0.4810 0.5944 0.6894 0.7610 0.8382 

MALS 0.6860 0.8546 0.9072 0.9208 0.9473 0.9578 

Boot 0.7583 0.7655 0.7872 0.8530 0.7958 0.8876 
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Table 12. Average width of selected confidence interval when data are generated from the Beta (5,2) distribution with 

skewness -1.53 
   Sample sizes    

CIs n=20 n=30 n=50 n=70 n=100 n=150 

C 0.5799 0.4652 0.3547 0.2979 0.2481 0.2018 

Sps 0.5730 0.4552 0.3425 0.2853 0.2367 0.1917 

AADM 0.5916 0.4696 0.3550 0.2969 0.2467 0.2001 

MAD 0.5053 0.4732 0.3526 0.2926 0.2423 0.1958 

GMD 0.5086 0.4098 0.3136 0.2636 0.2199 0.1789 

Sn 0.5714 0.4575 0.3496 0.2938 0.2452 0.1995 

DF 0.4609 0.3723 0.2860 0.2407 0.2810 0.1636 

LS 0.4790 0.3805 0.2892 0.2425 0.2020 0.1641 

ALS 0.3934 0.2543 0.1485 0.1048 0.0727 0.0481 

ST 0.4667 0.3982 0.2990 0.2494 0.2033 0.1675 

IQR 0.1048 0.0853 0.0662 0.0560 0.0469 0.0383 

Mchi 0.5694 0.4581 0.3501 0.2944 0.2454 0.1997 

MDF 0.4525 0.3665 0.2822 0.2378 0.1988 0.1619 

MLS 0.4703 0.3746 0.2854 0.2396 0.1997 0.1624 

MALS 0.3862 0.2504 0.1466 0.1035 0.0719 0.0476 

Boot 0.4507 0.3503 0.4856 0.4735 0.3878 0.0551 

 

 
Figure 11. Coverage Probability for all selected tests 

when data generated from the B(5,2) distribution 

Figure 12. Average width for all selected tests when 

data generated from the B(5,2) distribution 

 

Overall, ALS and MALS performed better in all 

simulation conditions and highly recommended for the 

practitioners. 

 

4. SOME CONCLUDING REMARKS 
 

This paper considers sixteen available different 

confidence intervals for estimating the population 

process capability index, Cp. We compared their 

performances under the same simulation condition but 

with different kinds of distributions, such as symmetric, 

right and left-skewed distributions. Both coverage 

probability and average width were considered as 

performance criteria. Our simulation study indicates that 

both ALS and MALS confidence intervals outperformed 

in all simulation conditions in the sense of high coverage 

probability and average width and can be recommended 

for practitioners. We sincerely believe that this paper will 

contribute to process capability literature, and it will be 

helpful to choose an interval estimate formula when 

researchers are interested in estimating the population 

process capability index. The findings of this paper are 

restricted to the simulation conditions of this paper. 

However, for a definite statement about the interval 

estimators, one may need more analysis. 
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