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A B S T R A C T 

In this paper, the kinematics of the motion of an inner moving circle along a 

twice as large fixed outer circle will be considered. Such circles are known in 

science as Cardan circles. Specifically, within this topic of the paper, cases will 

be presented where when rolling a small cardan circle within a large cardan 

circle, all points along the circumference of the small cardan circle will 

describe straight lines, which correspond to the diameter of the large cardan 

circle in length and position. Particular attention is paid to the determination 

of the turning circle as well as all other kinematic parameters in four-member 

transmissions. 

© 2022 Published by Faculty of Engineeringg   

 

 

 

1. INTRODUCTION 

 

As is well known, every plane motion can be represented 

as rolling a moving centroid on a stationary one without 

sliding. It is believed that one of the greatest 

contributions in the field of this research was made by the 

Milan physician, engineer and mathematician Gerolamo 

Cardano (1501 - 1576). For us, the most important is 

Cardan's observation, which refers to the kinematics of 

the motion of an inner moving circle along  a twice as 

large fixed outer circle. In science, such circles are known 

as Cardan circles (Figure 1). 

 

When the inner Cardan circle 2 rolls without sliding 

along the outer side of the circle 1, then we have that each 

point on the circumference of the smaller circle defines a 

straight line in a plane related to circle 1. These lines pass 

through the center O of a fixed circle, and their lengths 

are the same as its diameter . Point B (Figure 1) would 

move along the vertical axis and point A along the 

horizontal axis. All other points of the plane of the less 

moving circle 2 would describe elliptical trajectories on 

the fixed plane of the circle 1. Based on this theory, at the 

end of the 18th century, three-membered toothed 

planetary mechanisms were made with point guidance 

along a straight trajectory.  
 

 
Figure 1. Cardan circle 
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By selecting any point of the moving plane of the Cardan 

system and studying the path of its current center, the 

result is that the non-moving centroid is a circle, as well 

as the moving centroid, only with a diameter twice 

smaller than the non-moving one. Both centroids are 

located on the same side of the tangent of the current 

center. As all those plane motions, where the centroids 

are circles, are called cycloid motions,  Cardan motion is 

a special case of this group of motions. Therefore, Cardan 

motion is defined as the motion obtained when one circle 

rolls without sliding on the inner side of a circle of twice 

the diameter. 

 

2. THE CARDAN ISSUE 

 

Figure 2 displays a pair of Cardan circles with a diameter 

ratio of 1: 2. When rolling a small Cardan circle inside a 

large one, all the points of circumference of the small 

Cardan circle will describe straight lines, which 

correspond to the diameter of the large cardan circle in 

length and position. This is a particular case of the shape 

of curved couplers, whose curves are equal to zero. 

Figure 3 illustrates all possible movements in the Cardan 

system more closely. On the small cardan circle, in 

addition to the circumferential points B and K, describing 

the rectilinear paths, there are also points A, C, D and E. 
Point A is the center of the circle, which is known to 

describe the circular path. Points C, D, E lie in the plane 

of a small cardan circle and describe elliptical 

trajectories, whose large and small semi-axes can be very 

easily determined. First, the distance of such a point from 

the center of the small cardan circle is increased by the 

radius of the small cardan circle. Then, the same distance 

is reduced by the radius of the small cardan circle. It is 

now easily perceptible that the rectilinear trajectories of 

points B and K and the circular trajectories of point A are 

nothing but exceptional boundary shapes of the ellipse, 

once with a small semi-axis equal to zero and another 

time with the axes of an ellipse of equivalent magnitude. 
In the gears mentioned so far, circumferential points of 

circles such as B and K have always been used, together 

with the center of circle A or with the circumferences of 

the circle itself, but the second elliptical walking point 

has never taken part in the process of motion design. 
However, an elliptical trajectory or at least such suitable 

elements as the vertex curvature circles can also be 

applied. (Figure 4). Figure 3 displays a small cardan 

circle forcibly guided by an OA curve and by rolling 

inside a large cardan circle. An additional built-in 

rotating lever DO1
 (Figure 3) limits the range of motion 

to the part of the large upright ellipse, where the vertexes 

of the curves approach the circle nicely. More precisely, 

it is the domain in which the smallest deviation between 

the variable radius of curvature of the ellipse and the 

constant length of rotating lever DO1
does not exceed the 

total tolerance, which results from the total joint 

clearance in the gear unit. 

 
Figure 2. Particular case of the shape of curved 

couplers 

 
Figure 3. Possible movements of the caradan system 

 
Figure 4. Elliptical path construction 

 

Based on this example, a wide range of possibilities of 

approximately rectilinear point guidance arises, ie. 

obtaining approximate cardan movement (Figure 5). In 

all gears (Figure 5) the rectilinear guidance of point B (by 

the circumference of the small cardan circle) is retained, 

while the OA curve of the gear (Figure 5a) is replaced by 

rotary levers in other gears (Figure 5b, Figure 5c, Figure 

5d), which describe the vertex circles, whose curve 

coincides with the ellipse, given in Figure 3. In the case 

of a gear (Figure 5b), point C describes an ellipse, while 

in Figure 5c the ellipse is described by point D. Figure 5d  

displays the ellipse described by the point E. In all the 

above gears (Figure 5), point K (on the circumference of 

a small cardan circle) is guided along a line p, while the 

newly introduced rotating levers describe elliptical 

trajectories.  
 

 
Figure 5. Gears with approximate cardan movement 

 
This is not the case only for an arbitrarily chosen point K, 

but for all points on the circumference of a small cardan 

circle. All these points describe shorter or longer, but 

correct rectilinear paths, which are directed towards the 

center of the large cardan circle, ie. according to the 
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intersection point of the directions of rectilinear guidance 

of points B and K. 

 

The gears discussed below were very popular at the 

beginning of their discovery and found the use for 

rectilinear guidance both for writings on indicators and 

for guiding machines and pumps. However, their 

significance is particular nowadays for the practical 

application of the curves, which describe the guiding 

point of the coupler of a mechanism. But if the path of 

the point K is not a suitable one, then any other point can 

be chosen on the small cardan circle, representing a better 

shape of the curve. 

 

2.1 Cardan motion and coupler movement 
 

The scientist Rau replaced the rectilinear motion of point 

B (Figure 5) with a circle of curvature of the elliptical 

path and a corresponding rotating lever, obtaining an 

articulated quadrilateral where all points of coupler lying 

on the circumference of the imaginary cardan of this 

circle, have rectilinear parts of the path. In Figure 6, for 

example, point E, as a point of the plane of the small 

cardan circle, describes an ellipse, which has a radius of 

curvature in the shown position of the small cardan circle. 
In Figure 7, this radius of curvature is presented as a 

walker. The axis of the walker E thus moves along a 

circle around the fixed bearing of the walker, which as a 

circle of elliptical curve approximates the ellipse on that 

part of the path with great accuracy, as shown in the 

figure by a solid line. The same ellipse would be 

described by point E, as a point of a small cardan circle. 

As one of the points in the plane of the small cardan 

circle, its center A describes a circle around the center C 

(switching pole) of the large cardan circle, which is used 

as a curve circle with the aid of the CA curve (Figure 7). 

The path of the axis of curve A completely overlaps here 

with the path of point A, as the center of a small cardan 

circle. Points E and A are at the same time points of one 

rigid plane, which is a plane of a small cardan circle in 

Figure 6, whereas in Figure 7 it is a plane of a coupler. 

With reference to the subject mentioned above, the result 

is that the plane of the coupler in Figure 7 moves for a 

very long time in the same way as the plane of the small 

cardan circle in Figure 6., while the motion of point E on 

the cardan ellipse can be replaced by the motion of the 

same point E along the line of curvature of the cardan 

ellipse. This again means that the laws of motion of the 

coupler plane can be replaced by much simpler equations 

of the ellipse of cardan motion in this domain, which as 

second-degree equations lie in the field of elementary 

mathematics.  However, in each position of the gear there 

are coupler points, whose path curves at one point have 

zero value. The curves in such places look approximately 

like straight lines. Therefore, the paths of the coupler 

points have inflectional/bending points. The radius of 

curvature is then infinitely large, so that at these points 

the normal acceleration has zero value. As all points of 

circumference of a small cardan circle have rectilinear 

paths, as a result, they do not have normal acceleration. 

Recognizing this fact is of fundamental importance for 

the further development of Rau's theory of approximate 

cardan motion. 

 

 

 

 

 

 

 

 

 

Figure 6. Path point E a small cardan circle   

 

 

 

 

 

 

Figure 7. Path point of gear 

 

2.2 Approach to the turning circle 

determination 

 

When referring to each square gear, there are coupler 

points in each position, whose normal acceleration at one 

point has a value of zero. They then pass a point on their 

path called a flat point. It can be proved that such a 

coupler point, without taking into account the special 

positions, lies on a circle in the plane of the coupler. Such 

a circle is called a turning circle or a normal circle. 

Besides, there are coupler points in each position, whose 

tangential acceleration at one point has value zero, which 

means that they occasionally move in an equal manner. 

Such coupler points are located in the plane of the 

coupler, again not taking into account the special 

positions, also on the circle, which is called the 

tangential circle. The turning circle and the tangential 

circle, the so-called Bresse's circles, intersect at two 

points, at the velocity pole P and at the acceleration pole  

J (Figure 8). The center of the turning circle lies on the 

normal of the pole trajectory, the center of the tangential 

circle lies on the tangent of the pole trajectory. The 

normal of the pole trajectory and the tangent of the pole 

trajectory, the determination of which is still being 

explained and on the basis of Figure 10, all the way to the 

Figure 13, should be considered as an axial cross in the 

plane of the coupler and facilitates the determination of 

individual coupler points. While the velocities of the 

arbitrary coupler points are related to each other as their 

distances from half the velocity, thus the accelerations of 

the arbitrary coupler points in relation to their distances 

from half the acceleration are obtained. The precondition 

is that, for some coupler point, the speed and acceleration 

according to the size and direction are known. If the 

velocities in this direction of action are plotted as vectors, 

then they always stand at right angles to the 

corresponding pole beam P. Figure 8 shows the curve of 
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the walker in the internal dead position. The center line 

of the coupler closes with a tangent of the pole path, 

angle  . In addition to the two coupler joints A and B, 

four more coupler points were tested on the centerline of 

the coupler : K1, K2, K3, and K4. 

 

Figure 8.  Bresse's circles 

 

Figure 9. Normal acceleration construction 

 

Their velocities stand at right angles to the coupler 

midline, the lengths of the vectors are derived when air is 

drawn through the vertex of the vector Av  and the pole 

P. As opposed to velocities, the acceleration vectors close 

the same angle  to each other with the beam poles to 

the acceleration pole J, for each gear position, which is 

normally less than 
90 . 

90 . The acceleration vectors of the various coupler 

points in Figure 8 are determined by plotting a parallel 

line to the present coupler line. This line passes through 

a single point on the pole ray AJ, which is obtained when 

the acceleration vector Aa from its position on the curve 

midline (normal acceleration) coincides by the angle on 

the pole sign AJ. At certain signs of the pole, for the 

respective coupler points, the obtained lengths of the 

vector must then overlap by an angle in the respective 

sense, when they want to show their direction of action. 

The vector vertex lies in the curve bearing 0A , so in that 

case the length of the vector is equal to the length of the      

curve. This follows from the construction of normal 

acceleration (Figure 9), when the speed of the curve axis 

Av is chosen, equal to the length of the curve. 

 

 

The acceleration vector for the walker axis, here at the 

same time the pole of velocity P, lies on the normal path 

of the pole. This acceleration cannot be considered either 

as a tangential acceleration, or a normal acceleration, but 

this is an inflectional acceleration, since the walker axis 

B lies here in its dead position. The angle between the 

acceleration vector Ba and the corresponding pole beam 

to J appears in the turning circle, as a circumferential 

angle above the tendon JW. It follows that for all 

couplerpoints on a bending circle, for example for a 

coupler point K2, the angle between the acceleration 

vector and its pole beam must appear as a circumferential 

angle above the same tendon. The direction of the 

acceleration vector for arbitrary points on the turning 

circle therefore coincides with the direction of the 

velocity vector. Thus, acceleration can only be tangential. 

All coupler points on the turning circle pass through the 

turning points. For the coupler points on the turning 

circle, an acceleration vector arises, the normal 

component of which is directed from the pole. The 

coupler curve of such a coupler point K1 must appear 

convex, viewed from the pole, since, as is well known, 

the direction of normal acceleration is always directed 

radially towards the curvature centre. For coupler points 

outside the turning circle, for example K3 or K4, a normal 

component arises, which is directed towards the pole, 

which means that the respective places of the 

couplercurves, viewed from the pole point, must look 

concave. The intersection point of the turning circle with 

the normal of the pole path is the turning pole W, and the 

intersection point of the tangential circle with the tangent 

of the pole path is the tangential pole T. The triangle 

PTW closes the tangent angle  at the pole. This angle 

is the circumferential angle above the tendon PJ in the 

tangential circle. The same circumferential angle applies 

to all other points on the tangential circle, in relation to 

the same tendon PJ. Therefore, as can be seen from the 

example of the curve axis  A, that the velocity and 

acceleration vectors for all points on the circumference 

of the tangential circle stand at right angles to each other. 
The resulting accelerations can only be normal 

accelerations. The acceleration pole J, as the coupler 

point and the intersection point of both circles, passes one 

inflectional/bending/ turning point of its path, while the 

velocity pole P, as the coupler point and also as the 

intersection point of both circles, is standing still and gets 

the  inflectional acceleration. 

For the ratio of two diameters of the tangential circle td  

and the turning circle Wd , it holds 

 

                        (1) 

 

Thus, the diameter of a tangential circle can be 

determined, when the diameter of the turning circle and 

the angle   are known. The following formula is also 

used for the diameter of a tangential circle. 

ctg
d

d

W

t =
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                             (2) 

 

Along with the distance between the pole P and the axis 

of the curve A, which can be taken from the drawing, the 

angle of the pole beam , measured according to the 

tangent of the pole trajectory, is required to determine the 

diameter of a tangential circle. It follows that the position 

of the tangent of the pole path must first be determined. 

The position of the tangent pole P and the magnitude of 

the beam angle of the pole , must be determined by the 

auxiliary structure, which is given in Figure 10 a and 

Figure 10 b, presented for the walker. The current pole P 

is located as the intersection point of the midlines 

(straight lines through the joint points) of the curve and 

the walker. This gives values for distances PK and PM. 

The axis of the walker is marked here with K (coupler 

point), and the bearings of the walker with M (curvature 

center). The center lines (straight lines through the joint 

points) of the base and the coupler intersect at the relative 

pole Q. The straight line through the relative pole Q and 

the instantaneous pole P is the so-called collinear axis or 

collineation axis and closes the angle with the pole curve 

beam, which, but in the opposite direction, must be 

applied to the pole walker beam, in order to obtain the 

tangent of the pole trajectory as its free angle arm. To 

find the angle of the pole beam ( ), the angle for the 

walker is between the tangent of the pole trajectory and 

pole walker beam, or between the collinear axis and the 

pole curve beam. To calculate the diameter of the turning 

circle, the application of the tangent of the pole trajectory 

into the auxiliary structure can be omitted. This method 

of calculating the diameter of the turning circle has a 

disadvantage – it lies in the need for auxiliary 

construction and in measuring the required distances PK 

and PM and the angle of pole beam ( ) in it, because it 

must be very accurately drawn and very carefully 

measured, especially the angle of pole beam ( ), if 

some major inaccuracies are to be avoided. The 

construction of the turning circle diameter is possible 

without using the angle of pole beam ( ). It is only 

necessary to construct the tendon of the turning circle, for 

each pole of each base of the bearing member (curve, 

walker) of the respective gear. As Figure 11 shows, the 

verticals intersect at the endpoints of these tendons at the 

turning pole W. The distance between the current pole P 

and the turning pole W is the diameter of the turning 

circle Wd  (and at the same time the normal of the pole 

trajectory). Sometimes the assessment of diameter of the 

turning circle, when the tangent of the pole trajectory  is 

being detected according to Figure 10 a or Figure 10 b, 

but also the vertical in the current pole W is immediately 

drawn, the normal of the pole trajectory (Figure 12). 
Then only one of the tendons of the turning circle must 

be drawn, whose vertical at the end point of the tendon S 

intersects the normal of the pole trajectory at the 

inflectional/bending point W. Between the pole P and the 

turning point W lies the diameter of the turning circle. 

The determination of the tendon of the turning circle is 

shown in Figure 13 for the pole curve beam, and in Figure 

12 for the pole walker beam. The current pole P is 

obtained, as is already known, as the intersection of the 

curve centerline/midline and the walker midline (straight 

line through the joint points). The straight line 1 should 

be drawn through the axis of the curve K (Figure 13), at 

right angles, towards the centerline of the curve, plus the 

parallel 2, through the current pole P. On the straight line 

1 through the axis of the curve K, the distance PK is 

applied, with the endpoint T, through which then the 

straight line 4 is drawn from the bearing of the curve M, 

which intersects the parallel through the current pole 2 at 

the point. The distance has the length of the required 

tendon of the turning circle PS in the pole curve beam 5. 

On the vertical 6 at the end point of the tendon S, lies the 

turning pole W (Figure 11). The corresponding 

construction in Figure 12 follows in the same way. The 

points K and M are then only the axis and the bearing of 

the walker 1. Since the angle between the pole curve 

beam and the line 1 is arbitrary, through the axis of the 

curve K, then it is selected the way the line 1 coincides 

with the centerline of the coupler, as it is done in Figure 

13 b for the construction of Figure 13 a. The advantages 

of this position of line 1 lie in the fact that this line then 

passes through the axis of the walker and therefore, as 

well as the parallel line 2, through the current pole P, it 

can be used both for determining the tendon of the 

turning circle along the pole curve beam and for 

determining the tendon of the turning circle in the air of 

the pole walker beam, which is shown in Figure 14. The 

construction is not only considerably simplified, but 

above all, it is made more accurate due to the elimination 

of some sources of error. The dependence between the 

turning circle and the walker curvature is shown in 

Figure 15. Figure 15 shows the position of the walker in 

the internal dead position. The axis of the walker B 

coincides with the pole P, and the bearing of the curve

0A  with the relative pole Q. The midline of the coupler 

is at the same time the collinear axis (collineation axis), 

and it coincides with the pole curve beam as well. 

 

 
(a)                                  (b) 

 

Figure 10. Determining the position of the tangent  of 

the pole path 

 

cos

AP
dt =
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Figure 11. Construction of the diameter 

 

 
Figure 12. The determination of the tendon of the 

turning circle is shown for the pole walker beam 

 

 
Figure 13. The determination of the tendon of 

theturning circle is shown for the pole curve beam 

 

Figure 8 and Figure 15 both show the position of the gear 

in the plane of the image, so that the tangent of the pole 

trajectory t stands vertically and the normal of the pole 

trajectory horizontally, while the turning circle lies to the 

right of the tangent of the pole trajectory. This makes it 

easier to compare two images. The position of the turning 

circle and its side of the tangent of the pole trajectory 

depends on the direction of the curve of the coupler point, 

which serves as the basis for determining the turning 

circle. In this case, it is the axis of the curve A. When the 

circle of the curve in the area of the axis of the curve from 

the direction of the pole looks convex, then the axis of 

the curve lies in the turning circle, and if it looks concave, 

then the axis of the curve lies outside the circle of rotation 

(Figure 8 and Figure 15). 

 

Figure 14. The determination of the tendon of the 

turning circle is shown for the pole curve beam and for 

the pole walker beam 

 

It follows from the above that the tangent of the pole 

trajectory coincides with the pole walker beam, since the 

angle to be applied has a value of zero, according to 

Figure 10 a. Thus, a particularly clear picture is obtained. 

Due to the rotation of the curve, the pole P moves in the 

direction of the tangent of the pole trajectory with 

alternating speed of the pole V. This can be decomposed 

into two mutually perpendicular components in the 

direction of the pole beam and transversely to the pole 

beam, in relation to the pole curve beam. The component  

in a transverse position to the pole beam is particularly 

important here with size sinv . 

 

Figure 15. Position of the walker in the internal 

dead position 

 

Afterwards, the following proportions can be set 

a

PA

PAPA

PA

v

v

A

0

0

0sin
=

−
=

                          (3) 

 



 PM

PKPM

PM

v

n

K

=
−

=
sin                         (4) 

For the point K1, the corresponding center of the curve

1M  is found as the point of intersection of the pole beam 

through 1K with the connecting line of the vertices of the 

vector of sinv  and for the coupler point 2K whose 

trajectory currently has a curve of zero value, the 

corresponding center of the curve 2M must lie at infinity. 

This is the case when the connecting line of the vertex of 

the vector passes parallel to the pole beam, in other 

words, when  
2

sin Kvv = . By definition, this point 

must then lie on the turning circle, since all points on the 

turning circle do not have normal acceleration. The 

distance of pole of the coupler point 2K is the tendon of 

the turning circle of length sinWd . 

The resulting proportions are: 

0

0sinsin

PAPA

PA

v

v

v

v

PA

d

AA

KW

+−
===

−


     (5) 
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Therefore, we get the diameter of the turning circle:  

 

( )
 cm

PAPA

PAPA
dW

sin0

0

−
=                                 (6) 

According to the Formula 2, since the diameter of a 

tangential circle is also known, then the acceleration pole 

J also arises as the intersection point of both circles. 

 

2.3 Euler-Savary approach for determining the 

curvature of coupler curves 

 

For an arbitrary gear position, for the known diameter of 

the turning circle Wd , the calculation of the 

corresponding center of the curvature M for each point of 

the coupler K can be easily made. Using the example of 

the 
1K coupler point, Figure 15 shows the following:   

 

   

1

11

sin

sin

sin PKd

PK

x

v

d

PM

WW −
==






               (7) 

 

Based on this, the distance of the pole of the curvature 

center generally follows: 

 

      cm
PK

d

d

PK
PM W

W −
=





sin

sin
                    (8) 

  

To use this formula, the first thing to calculate is the 

diameter of the turning circle Wd  according to formula 

(6). Formula (8) can then be applied to any arbitrary pole 

beam and again to any arbitrary coupler point. The angle 

not exceeding 
90 can always be used as the pole beam 

angle, paying attention to the sign rule for the pole 

distance. All distances on the side of the tangent of the 

pole trajectory on which the turning circle lies have a 

positive sign, and all distances on the other side have a 

negative sign. 

The position of the turning circle  

The position of the turning circle to the tangent of the 

pole path is determined according to the fact that the 

paths of joints A and B are also circles, circular arcs or 

straight lines. If there are circular curvatures, then the 

coupler joints lie inside the turning circle, if their path 

towards the pole P is convex. However, if the circular 

curvature rotates its concave side to the pole P, then such 

coupler joints lie outside the turning circle. A straight-

water joint lies on the turning circle. Formula (8) is 

known as the Euler-Savary formula. If 

thecorresponding coupler point for a given center of the 

curve is to be determined, by arranging the formula you 

get that 

 

         cm
PM

d

d

PM
PK W

W +
=





sin

sin
                   (9) 

 

The following formula for the radius of curvature of the 

coupler curve applies in any case. 

 

           cmPKPM −=                                   (10) 

 

With each articulated four-member gear, the position of 

the turning circle changes depending on the position and 

size of the gear members. If the area of coupler curves 

with a relatively constant curvature is required in a 

gearbox design, it is appropriate to give preference to 

those areas in which the diameter of the turning circle 

Wd  has an extreme value. The relative change in the 

diameter of the   turning circle Wd  is always the smallest 

in the area of its extreme values. It follows that the 

influence of the diameter of the turning circle Wd  on the 

curvature relations in the plane of the coupler derives 

from the Euler – Savary formula.  Therefore, some 

relatively minimal changes can be expected, when 

preference is given to such areas of the transmissions, in 

which the diameter of the turning circle Wd  is slightly 

changed. 

 

3. FUNDAMENTALS OF KINEMATIC 

GEOMETRY OF INFINITELY CLOSE 

POSITIONS OF CURRENT CARDAN 

MOTION 

 

A concept that has proven to be very useful in the design 

of mechanisms is the Cardan plane motion (Levitskii, 

1981; Rusov, 1980; Kornejcuk, 1976; Dijksman, 1980; 

Bloh, 1981; Norton, 2001; Uicker et al., 2003). It can be 

interpreted in the case of water movement, as the special 

position of the moving plane in which the movement of 

all points on it is similar to the one realized in the Cardan 

motion. In the new literature and papers dealing with this 

area, when referring, the term "geometry of current 

kinematics" is increasingly used. This expression refers 

to both the plane and the spatial problem. The founder of 

this field of kinematics is considered to be Miller/Müller 

Reinhold. At the end of the last century, with a series of 

works, he laid the foundations of the theory of kinematics 

of infinitely close positions. Sometimes, in the design of 

mechanisms, it is preferable for a member AB to have 

such a motion, so that the paths of its points A and B are 

tangents at some point with the desired paths, rather than 

simply intersecting those paths at several different points. 

For the paths of points A and B to be tangents to the 

desired paths, this could be achieved by requiring that 

positions 1 and 2 be infinitely close to each other at the 

moment of motion, when we want the tangential 

direction of the paths to be achieved. This position can be 

marked with A12 and B12 . The pole 
12P is transformed 

into the current velocity center, i.e. rotations for member 

AB. (Figure 16). 
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Figure 16. Current velocity center* 

*Putanja tačke B -  Point B path.,  

Normala na putanju B – Normal on the path B,  

Pol i trenutni centar – pole and current center 
 

 
Figure 17. Two infinitely close positions 

 

If we want the moving plane AB to achieve movement 

with the mentioned characteristics, it could be performed 

using a four-member articulated mechanism that meets 

the following requirements: the center point (fixed 

bearing) corresponding to the point 
12A of the circle 

must be at any point of the normal on the path, more 

precisely, on the line 
1212 AP , and the corresponding 

center of the point 
12B on the line 

1212 PB . If we want 

the moving plane AB to have such a motion that the 

trajectories of points A and B are tangents to the desired 

trajectories in one position and pass through the another 

non-tangential position, we can identify the first position 

as 1 - 2 (infinitely close) and the non-tangential position 

as position 3 (Figure 17). Then, such a movement can 

also be performed using an articulated quadrilateral. If 

point A is desired to be a movable bearing, then the 

corresponding fixed bearing Ao will be located at the 

intersection of the line
1212 PA  and normal bisector on

312 AA . The fixed bearing 0B  is located in the same way. 

If the moving plane AB should perform such a 

movement, so that the trajectories of its points A and B 

in a certain position are even closer to the desired 

trajectories, then we can ask for three positions of the 

plane, infinitely close to each other. In this case, since the 

curvature circle for a curve at a given point is defined as 

a circle having "third-order contact" with the curve 

(coinciding with the curve at three infinitely close 

points), the fixed bearings A0 and B0 of the articulated 

quadrilateral that would perform such a motion would be 

located at the curvature centers of the curves at points 

A123 and B123. 
 

 
Figure 18. Distances according to Euler-Savary 

equations 
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P – current rotation center, located in cross section

CBA CCBCAC ,,  ,  

−A  the angle between PA and the tangent of the 

current center (tangent to the trajectory of the center P, 

when the moving plane is moving to a new position)  

−CB  , defined similarly as 
A , PA, PB, PC are 

always taken as positive. 

 

APC  is treated as positive when A and CA are on the 

same side of the current center P and negative when A 

and CA are on opposite sides of the center P. The same is 

valid for PCB and PCC . 
 

For an even better approximation of the desired 

trajectory, we can ask that the moving plane has four 

infinitely close positions. Then it is no longer possible to 

use any point of the movable plane for the installation of 

the bearing, since in general, it is not possible to achieve 

that the circle with the curve has contact of the fourth row 

at every point. Only those points of the movable plane, 

whose paths have a fixed value of curvature, for the 

moment of movement of interest, can be used as movable 

bearings (which at the same time belong to the coupler 

and members connected to it). The geometric location of 

points with a stationary curve is the "curve of circling 

points", and the geometric location of the points of the 

corresponding centers of curvature is the "curve of 

centering points". (These terms were used by German 

authors). 

 

4. APPROACH TO PTO TRANSMISSION 

DESIGN 

According to the Euler-Savary formula, the 

corresponding curvature center (formula 8) can be 

calculated for a given coupler point, or vice versa, for a 

given curvature center, the corresponding coupler point 

can also be found (formula 9). In this case, a turning 

circle must then be determined for the specific position 

of the transmission unit according to position and size. 

When different positions are to be compared regarding 

the ratio of the curvatures of coupler curves, and then this 

(11) 
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can be done concerning the constant diameter of the 

turning circle
Wd  when certain positions of the 

transmission are plotted in the appropriate proportions. 

 Here we have that the Euler-Savary formula reflects 

legality, which can be represented as nomograms 

(construction tables). In doing so, one must start from the 

assumption that the turning circle is constant, as is the 

case with a small Cardan circle. The application of such 

nomograms for different transmission positions, different 

four-member transmissions with different turning circle 

diameters is simply a ratio issue. In this paper, we will 

not deal with the problem of nomograms, and 

accordingly we will give one example of designing a 

transmission without the use of construction tables. 

 

4.1 Design of transmissions without the use of 

construction tables 

 
Basically, the most common condition for designing a 

transmission will be that, for instance, a curve and 

perhaps a walker of a certain length should be practically 

applicable, due to existing standard parts or other design 

conditions. 

The peculiarity of the Cardan transmission is that there is 

always the same image of the calculated transmission and 

the same ratios regarding the issue of rolling a small 

Cardan circle in a large one. 

Here we will give an example where we have the 

position of the tangent of the pole trajectory in parallel 

pole rays. By comparing Figure 19a with Figure 19b, it 

is easy to see the transition from finding the tangent of 

the pole trajectory t at the finitely close pole (Figure 7.10a 

and Figure 7.10b) and at the infinitely distant pole 

(Figure 19b), when the angle of the full beam  is 

replaced by one closed arc between its arms (Figure 19a), 

which at the infinitely distant pole becomes a straight 

line, i.e. the distance between parallel lines. 

 

Figure 19. Position of the pole trajectory tangent at 

parallel pole rays 

The relative pole Q is obtained as the intersection point 

of the midline of the coupler and the base (line through 

the support joints) (Figure 19b). At the distance of this 

relative pole from the curve, and measured from the 

walker in the opposite direction, the tangent of the 

trajectory pole t is drawn as a parallel line, at an infinitely 

distant pole at the moment of parallel center lines of the 

curve and the walker. The distance of the relative pole Q 

from the walker can be used, whereby the distance from 

the curve itself must be subtracted and applied in the 

opposite direction, in order to find the tangent of the pole 

trajectory t. 

 

5. CONCLUSION 

 
It can be concluded that this work provides a solid base 

of new information on the possibility of approximation 

of Cardan movement and quantitative magnitudes of 

deviations of various solutions from rectilinear paths. If 

we take into account all that is stated in the paper, it 

should be emphasized that when designing articulated 

four-member mechanisms with Cardan movement, it is 

necessary to check, among other things, the size of the 

error and whether it meets the technological 

requirements. If they happen to be unsatisfactory, then 

the deviation of the constructive positions of the plane 

between which there is a maximum constructive error 

should be undertaken. After that, the results again by 

analyzing and synthesizing the mechanisms should be 

checked. If we are not able to improve the accuracy of 

the movement in the proposed way, then we use one of 

the optimization techniques, with the application of 

nonlinear programming, which we have not dealt with in 

this paper, and may be a suggestion for further research. 

However, if the accuracy of the obtained movement 

meets the technological requirements of a particular 

application of the mechanism, then in that case the 

process of designing such mechanisms is interrupted. In 

particular, as a proposal for further research, it is 

suggested to develop a mathematical model for 

articulated four-member mechanisms, based on which all 

parameters of the articulated quadrilateral can be 

determined, and the coupler water point describes the 

desired trajectory or vice versa, for the observed 

approximation interval, since we have not dealt with the 

design of four-member mechanisms with the help of 

construction tables (nomograms) in this paper. 
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