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A B S T R A C T 

This paper presents a novel method which generates the solution of Reynolds 

boundary value differential equation as a combination of the solutions of two 

initial value problems (IVP). By using the linearized PH theory, the results for 

the concentric Externally Pressurized Gas Bearing (EPB) were used to solve 

the case of a steady state eccentric EPB. The method was also used to 

investigate the influence of the feeding recess volume on the cylindrical whirl 

threshold ratio and bearing coefficients as well as for the calculation of the 

transition point between unchoked to choked flow. The results have 

engineering significance as the EPB coefficients are shown to vary 

considerably due to the interaction between the recces volumes and the 

journal vibration. Also, the transition from chocked to unchoked flow changes 

the gas bearing dimensionless flow and, as a result, the inlet pressure 

values.The Mathematica program used to implement the method has the 

advantage that it does not require grid spacing, or an estimated number of 

intermediate points. It employs standard Mathematica build-in functions, 

therefore easier to design and use for engineering applications. The 

calculated results and graphs are in fair agreement with available 

foundational experimental and theoretical published work. 

© 2020 Published by Faculty of Engineeringg 

 

 

 

 

1. INTRODUCTION 
 

In order to construct a solution to the boundary value 

problem describing the gas bearings a general solution 

to the associated differential equation is required. In 

most cases, the solution is found by using numerical 

methods. For the specific case of gas bearing’s 

Reynolds equation, a Robin boundary condition is 

derived. Over the years different numerical methods 

were used for finding a solution to this problem. 

 

The application of finite difference methods (Pink, 

1976, Pink, 1981) was initially employed for the 

analysis of the theoretical performance of hybrid 

bearings. The results demonstrated the variation of the 

aerodynamic component of lift versus a varying speed, 

L/D ratio and supply pressure. 

 

Another numerical approach was the use of trapezoidal 

rule and the pressure perturbation method for the 

analysis of the effect of journal rotation and vibration on 

the performance of externally pressurized gas journal 
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bearings (Lund, 1964). The row of the feeding holes 

was approximated as a line source. The threshold of 

instability was numerically solved as a function of 

supply pressure, feeding parameter and eccentricity 

ratio. The solution was found as a finite series in which 

the initial termis were generated from the initial 

conditions.  

 

Alternatively, Runge- Kutta method was used for 

solving Reynolds equation for an EPB with one row of 

feeding holes [(Fleming 1970) and two rows of feeding 

holes (Uneeb and Gohar, 1997). 

 

An approximated solution of the load capacity of an 

EPB was found by solving a linearized Reynolds 

equation by finite difference method (FEM) (Zhang, 

Zhu and Yang, 2008). 

 

A different approach for the calculation of the EPB 

pressure distribution was the use of Newton`s method 

and successive relaxation methods for faster 

convergence (Liu, Zhang and Xu, 2008). 

 

More recently a more accurate second order finite 

difference method in conjunction with an iterative 

procedure for solving the gas bearing perturbed 

Reynolds was published (Wang, Xu, Wang, Zhang, 

Yang and Peng, 2017). 

 

In this paper the transformation of boundary value 

problems into initial value problems mathematical 

method (Ascher and Russell, 1981; Klamkin, 1970) is 

extended to complex functions. The method was 

implemented into a computer program by using 

Mathematica programming language. The program was 

designed, tested and validated as a practical engineering 

tool for an accurate assessment of the parameters and 

performance of Externally Pressurized Gas Journal 

Bearing working in a vertical and steady state position. 

 

2. ANALISYS 
 

A subsequent analysis and comparison of different 

externally pressurized bearings` performance and to 

generate design criteria and charts of general validity 

requires the definition of specific dimensionless groups.  

These groups are derived from the basic equations 

describing the pressure distribution in the gas bearing 

and from Reynolds equation expressed in a polar system 

of coordinates. Figure 1 shows a typical aerostatic 

journal bearing with one central row of feeding holes. 
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Figure 1. E.P.B. Section 

 

The system analysed in this paper is composed by two 

identical EPB’s constraining a vertical axis rotor (or 

only one whose eccentricity ratio is negligible).  

Initially, the rotor centre of mass is equidistant between 

the bearings and coincident with its geometric centre. 

The bearings are externally pressurized, each with one 

central row of feedholes. When the rotor spin axis 

suffers a small radial perturbation, only cylindrical whirl 

is assumed.  

 

The tangential component of the aerodynamic damping 

force acts on the orbiting rotor centre and according to 

the sign of this force, the rotor centre will either spiral 

inwards back towards its equilibrium position (for a 

negative sign) or will spiral outwards (for a positive 

sign). At the stability limit, when the tangential damping 

force is zero, the rotor centre will start to move on a 

circular orbit. For an externally pressurized gas bearing, 

the following dimensionless groups are defined: 
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(1) 

 

Using the above defined dimensionless groups Reynolds 

equation in a fixed system of coordinates is derived as: 
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(2) 

 

As shown in Figure 2 a rotating system of coordinates is 

introduced by the substitution: 
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Figure 2. Rotating system of coordinates 

 

The dimensionless film thickness, H, is express as: 

 

 1 Cos( )rH  = +  (4) 

 

Substituting equations (3) and (4) into equation (2) it 

results: 
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(5) 

 

2.1 Boundary Conditions for Single Orifice 

Entry 
 

At the midplane of the bearing, the axial mass flow per 

unit length of circumference must equal one-half the 

mass flow through a unit length of the feeding line 

added to the rate of change of gas in the feeding pocket 

with time. Consider the mass flow Gi out of the bearing 

at one side as shown in Figure 3: 

 

 3

12
i

h dp
G

dz




= −  

(6) 

 

The density of the gas, , can be related to the film 

dimensionless pressure by using the gas state equation 

such as: 

 

 
a

S S

p
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R T
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Figure 3. Gas flow in an EPB with a single row of 

feeding holes with recess volume 

 

The boundary condition relates the flow through a 

feeding hole with the out flow through a strip line of the 

bearing. Although in practice, there are a finite number 

of feedholes, in order to make the problem tractable it 

was assumed that the row can be represented by a line 

source as it enters the film (Powell, 1963). A common 

parameter of these flows is the inlet pressure Pi (the 

dimensionless pressure immediately under the hole). 

Substituting equation (11) and the dimensionless 

bearing groups defined by equations (2), the mass flow 

Gi is calculated as: 

 

 23 3 ( )

12

ar
i

S S

pc H PdP
G

R T d R 
= −  

(8) 

 

The flow into the orifice (and out of one side) is: 
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where ,
H


 =  

2

r

a

c d
 =  and m is the dimensionless 

mass flow. Gi and GS are linked by: 
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(10) 

 

where Vi is the orifice recess volume (refer to Figure 

3).The partial derivative expresses the rate of change of 

gas in pocket with time. By using equation (6) and the 

system of rotating coordinates in which it is assumed 

that the journal is rotating with a constant angular whirl 

speed , the equation (10) is reduced to: 

 

The term 
4

i a i

r S S

P p VN

R R T 

 


 in the equation (11) shows 

that at a fixed pocket in the bearing wall, the journal 

surface moves away and towards it as it whirls with a 

constant speed, .. 
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The dimensionless mass flow m for a perturbed position 

of the journal is related to the dimensionless mass flow 

in the initial concentric position as follows: 

 

 

0 0( ) ( )i
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m m P
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= + 
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(12) 

 

In the equation (11) the sub index “i” for P refers to the 

inlet film perturbed pressure. 

 

The dimensionless inlet pressure Pi can be written as a 

first order perturbation: 

 

 
0 1) )i r i i rP(θ ,ζ P εP (θ , +  (13) 

 

The inlet pressure variation is: 
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The dimensionless mass flow is also calculated from the 

theoretical equation for one-dimensional, steady, 

isentropic flow of an ideal, gas through a nozzle, 

assuming the gas accelerates from stagnation 

conditions: 
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(16) 

 

In the above equations  is orifice vena contracta 

coefficient (Figure 4) and k is the adiabatic gas 

exponent. 

 

 

Figure 4. Gas flow profile downstream of the feeding 

hole 

The set of formulae (15) and (16) presents two formulae 

for the dimensionless mass flow, m, according to the 

pressure ratio value, Pi/Ps. The threshold value of the 

pressure ratio has a physical meaning: it shows the 

transition from the subsonic speed to sonic speed (at the 

minimum area of flow). The subsonic speed is 

associated with unchoked flow, while sonic speed is 

associated with choked flow. Equation (16) shows that 

the dimensionless choked mass flow has a constant 

value, independent of the pressure ratio. Parameter k is 

the adiabatic gas exponent in the above formulae. 

Particularly for orifices, the flow continues to contract 

upon leaving the orifice. The parameter  is named 

“discharge coefficient” or “vena contracta coefficient” 

and takes into account the contraction of the gas flow. 

The value of the discharge coefficient is given by the 

ratio of the actual flow rate to the theoretical flow rate. 

From equations (8) and (11) results: 
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(17) 

 

By substituting equations (8), (9), (12), (14) into 

equation (17) and sorting the resulting terms according 

to the powers of the perturbation parameter  
(dimensionless eccentricity) a system of two equations 

is identified. The first equation is: 
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0( )P

q
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
= −


 

(18) 

 

Equation (18) shows the boundary condition at the 

bearing feeding mid-plane for the bearing with the 

journal in the concentric position. 

 

The second equation is: 
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The rest of the pressure boundary equations are found in 

the following way: At each end of the bearing ( = ) 

the pressure is atmospheric: 
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(20) 

 

The pressure is symmetric about the midplane ( = 0) 

therefore: 
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(
𝜕𝑃0
𝜕𝜁

=
𝜕𝑃1
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)𝜁=0 = 0 
(21) 

 

Equations (18), (19), (20), (21) express the E.P.B. 

boundary conditions. During the simplification process 

of equation (20) a number of groups are identified and 

introduced in the boundary equations such as: 
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Equation (26) determines q. The line source concept can 

lead to considerable errors in the flow rate estimate 

through the bearing clearance, particularly when the 

number of feeding holes is small. Therefore, a formula 

for a correction factor was derived based on the method 

of sources and sinks (Lund, 1967, Mori and Mori, 1971) 

. The flow is defined in terms of a potential or driving 

force, much like one defines an electric field using 

voltages. According to the assumptions of zero 

eccentricity and parallel plate flow, the externally 

pressurized bearing is opened out to represent a flat 

two-dimensional flow, where each orifice is represented 

by a point source. 

 

Based on the above-mentioned assumptions Lund 

(1967) estimated the correction coefficient, λ , as: 
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(27) 

 

In the above equation 
2

L
ξ

R
= , n is the summation 

index and N is the number of feeding holes. Therefore, 

the corrected formula for q is: 

 

 
00 ( )

( )
S

t s P ξ

P

q λλ P m=  (28) 

 

Figure 5 illustrates the pressure distribution contour 

plots for an externally pressurized gas bearing with one 

row of feeding holes.  

 

The constant pressure contour plots calculations were 

performed using a program written in Mathematica 

language for an E.P.B. with the following 

characteristics: 

 

Pa =105N/m2; =0.75; Ps=4.8; R= 0.01585m;  

N = 8 feeding holes; d = 0.0011m; L/D=1; 

cr = 3.6 *10-5m; a = 0.00055 m; 

 

 

Figure 5. Contours of constant pressure distribution 

 

2.2 First order perturbation method applied 

E.P.B. Reynolds Equation 
 

A first order perturbation around the journal concentric 

position can be assumed by using equation (4) and a 

first order pressure perturbation, (Lund, 1964, Lund, 

1967): 

 

 
0 1) )r rP(θ ,ζ P εP (θ ,ζ +  (29) 

 

 

Substituting equations (29) and equations (4) into 

equation (5) and considering the resultant expression as 

an identity in  in which the powers of  greater than 1 
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are neglected, then the following two equations are 

found: 
2 2

0

2

P
0

ζ


=


 

(30) 
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(31) 

 

P0 is the pressure around a concentric journal therefore 

it does not depend on r and can be integrated as: 

 

( )2
0 1P q ξ ζ= + −  (32) 

 

where q is a boundary condition determined from flow 

conditions expressed by equation (28). Equation (31) 

can be further transformed by assuming: 

 

The resulting equation is: 
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The associated boundary conditions (18) and (19) 

become for the function G(ζ): 

 

for  =  G() = 0 (35) 
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The solution of equation (34) allows for the calculation 

of bearing forces by integrating of the pressure: 
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The dimensionless radial and tangential forces are 

defined as: 
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The resultant load and respectively the attitude angle 

are: 

 

 2 2
r tW F F= +  

(41) 
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F f
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It can be noticed that even if the bearing is unloaded and 

vertical, an altitude angle, 0 ,  

can still be defined as:  

 

 
1 10 0

0
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tan ( ) tan ( )t t
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f F

f F
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Where the subscript “0” indicates the steady state for the 

vertical EPB (=0). For the dynamic equations the 

radial and tangential forces are assumed to have the 

following expressions (Mori and Mori, 1973; Cazan, 

Ghohar and Safa, 2002): 

 

 
rF K e=  (44) 

   

 
rF K e=  (45) 

   

At marginal stability
r , is replaced by Ω. In case of 

steady state Ω=0. The following equations can be used 

for the physical dynamic stiffness and damping 

coefficients K, C (Uneeb and Gohar, 1997): 

 

0
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F
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e→
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(46) 

 

( , , ) 0
lim ( )t

e

F
C
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=  

(47) 

   

The normalized stiffness and the damping film 

coefficients can be calculated assuming that the radial 

component is due to stiffness and the quadrature 

component is the damping force due to the squeeze 

action between the journal and the bearing surfaces. The 

defining equations (Mori and Mori, 1971) for the 

normalized coefficients are: 
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a
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K
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D
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The variation in percentages of the normalized stiffness 

and damping coefficients are calculated as follows: 
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Where kn0, cn0 are the normalized stiffness and damping 

coefficients for null recess volume and knV and cnV are 

the normalized stiffness and damping coefficients for 

non-zero recess volume. In the equations (48) and (49) a 

correction factor,  , was introduced in order to take 

into account the discreteness of the feeding sources as 

opposed to the feeding line concept used in the 

mathematical model of the gas bearing. The correction 

factor, , is used for correcting the bearing coefficients 

(Mori and Mori, 1971; Mori and Mori, 1973) while  

(Lund, 1967) is applied to the massless bearing flow, q, 

as shown by equation (28). The relation between  and 

  is that =1/.  

 

2.3 Linearized PH theory for steady state finite 

eccentricity 
 

The method presented in the previous section can be 

employed for solving the horizontal loaded E.P.B. 

working in an eccentric steady state position as shown 

in Figure 6. A first approximation to the finite 

eccentricity effects are found based on the linearized PH 

method of analysis for a plain cylindrical gas bearing 

(Ausman, 1961; Ghosh, Majumdar, Sarangi, 2014). For 

the steady state case the dimensionless pressure P can 

be approximated as: 
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(52) 

 

 

Figure 6. E.P.B. in steady state position 

 

P0 and P1 are the vertical E.P.B calculated pressures and 

ε0 is the dimensionless eccentricity for the steady state 

case. The E.P.B. forces for the steady state eccentric 

position are related to the previously calculated forces 

for the vertical EPB by the formulas: 
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Where 0 is the steady state eccentricity.  Fr0 and Ft0 are 

forces acting on the concentric EPB when =0.The 

dimensionless radial and tangential forces can be 

calculated as: 
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The static equilibrium equations are: 
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 0 Sin( ) Cos( )RS S TS Sf f = − +  (58) 
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3. PROPOSED SOLUTION 
 

Equation (34) is a differential equation subject to Robin 

boundary condition, also known as third type boundary 

conditions. These conditions are displayed expressed by 

the equations (35) and (36). The general solution of 

equation (34) can be expressed as a combination of the 

solutions two initial value problems (IVP): 

 

 
1 2( ) ( ) ( )G G AG  = +  (59) 

 

By substituting equation (69) into equation (34), G1(ζ) 

and  G2(ζ) are identified as solutions of the following 

differential equations with the associated initial 

conditions:  
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2 (0) 1G = , 2 1 0' (0)G σψ ψ= +  (63) 

 

The boundary condition at ζ=0 is satisfied 

automatically. The value of A is determined from the 

boundary condition at ζ=ξ as: 
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(64) 

 

With the condition: 

 '
2 2( ) ( ) 0G G +   

(65) 

 

Therefore, the solution of equation (34) can be written 

as: 
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By substituting dimensionless mass flow q from 

equation (28) into equation (32) it follows: 

 

 
0

2
0 0 ( )

[ ]
( ) 1

S

t s P ξ

P

P ξ λλ P m− =  (67) 

 

The value of P0(ξ) was numerically calculated from 

equation (67) using Mathematica software. As equation 

(67) does not have a closed form solution, the 

Mathematica symbol FindRoot was used within the 

procedure for calculating P0(ξ). The functions G1(ζ) and 

G2(ζ) were determined as interpolation functions by 

using as part of the procedure the Mathematica symbol 

NDSolve which can be applied for solving differential 

equations involving complex numbers. Another original 

feature of the program is the check of gas flow 

conditions. According to the value of the ratio between 

the pressure at film inlet and the supply pressure, the 

gas flow can be either chocked or not, according to the 

system of equations (15) and (16). An initial 

dimensionless mass flow value, qa, is required for the 

flow check iterative procedure. The “initial guess” for 

initiating the procedure was calculated using the 

following formula [3]:  

 

 12
2 2

2 2

1 1
{ 1 [1 4 ] }

2
a t

t

V
q 

 

−
= − + +  

(68) 

 

For the steady state eccentric E.P.B. the substitution of 

the equations (55) and (56) into the equations (57) and 

(58) generates a new system of equations containing as 

unknowns the steady state eccentricity 0   and the steady 

state attitude angle S.  The numerical solution of this 

system of equations was calculated using a numerical 

procedure involving the Mathematica symbol 

FindRoot.  

 

4. RESULTS 
 

The results presented in this section show the main 

characteristics of a vertical (or negligible eccentricity) 

and for the finite steady state eccentricity E.P.B. The 

E.P.B. and its gas supply have the following physical 

characteristics: 

 

pa = 105N/m2, R = 0.02m, N = 8 feeding holes,  

d = 0.001m, a = 0.0002 m,  

TS (temperature) = 305 Ko,  

 (adiabatic efficiency) = 0.6,  

k (adiabatic index) = 1.4, 

(vena contracta coefficient) = 0.87,  

RS (gas constant) = 29.27kgfm/kg Ko,  

  = 1.9*10-5Ns/m2 

 
Figure 7. Concentric pressure ratio P0i versus the 

feeding parameter (t) 
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Figure 7 presents the variation of the concentric 

pressure ratio P0i versus the feeding parameter (t) for 

an EPB with L/D=1. A family of plots was generated 

for different values of the dimensionless supply 

pressure. P0i has an asymptotic relationship with t. It 

can be seen that the increase in the feeding parameter 

results in P0i approaching unity (i.e. equal to the supply 

pressure). For low values of the feeding parameter t, 

the inlet pressure gradient is almost zero (fort< 0.01). 

This may be caused by the change in the flow 

conditions respectively the transition from “Unchoked 

Flow” to “Choked Flow”.  

 

In particular, as t →  the clearance → 0. Therefore, 

there is no flow, making P0i → 1 (inlet pressure equals 

the supply pressure). 

 

 

Figure 8. Eccentricity versus bearing number, , with 

t as parameter (L/D=1, Ps=3, m1=0.5Kg) 

 

Figure 8 shows the eccentricity versus bearing number, 

. The dimensionless length has the value of 1.  The 

eccentricity decreases with the increase in bearing 

number.  For a bearing number higher than 20 the 

eccentricity remains almost constant.  The increase in 

the feeding parameter has the result of decreasing the 

eccentricity. The feeding parameter is directly related to 

the aerostatic forces generated within the gas film. 

Therefore, for higher values of the feeding parameter (t 

>1) the eccentricity curves will converge due to the 

predominant hydrostatic effect. 

 

 

Figure 9. Eccentric Steady State E.P.B. Dimensionless 

eccentricity versus bearing number with mass, m1, as 

parameter (L/D = 1, PS=3, t=5) 

Figure 9 shows the variation of the eccentricity versus 

the bearing number . The dimensionless supply 

pressure has the value 3, and the dimensionless length 

has the value of 1. The graphs present a hyperbolic 

trend except the curve representing the eccentricity 

associated with mass equal to 0.01.  This curve 

represents an unloaded bearing and it was produced in 

order to test the software in a limit case.  The expected 

value was a constant eccentricity of value 0, which the 

software produced accurately.  The increase in the mass 

has the effect of a proportional increase in the 

eccentricity. The eccentricity tends to constant values at 

high speed as the aerostatic component loses its 

influence. 

 

 

Figure 10. Whirl Ratio (/ω) versus Bearing Number 

(Λ) at marginal stability (t=1, Ps=2, L/D=1) 

 

Figure 10 presents the whirl ratio versus the bearing 

number at marginal stability. The feeding parameter t 

has the value 1, the dimensionless supply pressure is 2, 

the dimensionless length is 1 and the recess volume has 

the values 0, 0.1, 0.2, 0.3, 0.4. It can be seen that the 

value of the whirl ratio is higher than 0.5 for relatively 

small bearing numbers values and for recess volume > 

0. The value of the whirl ratio tends asymptotically 

towards 0.5, when the bearing number increases.  

 

 

Figure 11. Load, W/ (ε Pa L D), and Attitude Angle (ϕ) 

versus Frequency Number (σ), (t=3, Ps=2, L/D=1) 
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Figure 11 presents the variation of the dimensionless 

bearing resultant force and attitude angle versus 

frequency number . The increase in the value of the 

frequency number increases the value of the attitude 

angle from 0.5 rad to 1 rad. For the dimensionless 

bearing total force, it can be noticed that the force 

presents a maximum for a frequency number of 5.  

 

 

Figure 12. Variation (%) of Normalized EPB 

Coefficients versus Frequency Number (σ), (Λ=0, 

L/D=1), (a) t=0.1, (b) t=1, (c) t=2 

 

Figure 12 (a), (b), (c) shows the effect of the recess 

volume on the damping and stiffness coefficients. The 

dimensionless supply pressure has the value 2 and the 

dimensionless length is 1. Equations (50) and (51) allow 

the comparison in % of the stiffness and damping 

coefficients of an EPB with recess volume against the 

stiffness and damping coefficients of an similar EPB 

with 0 recess volume. The percentage variations of the 

normalized coefficients are plotted against the 

frequency number, . For small values of the frequency 

number the variation of both the stiffness and damping 

coefficients presents a local minimum value. Further 

increase in the frequency number results in the increase 

in the damping coefficients over the values calculated 

for the damping coefficients of the EPB with 0 recess 

volume. The stiffness coefficients will stabilize at an 

almost constant value, which is smaller than the values 

calculated for the stiffness coefficients of an EPB with 

zero recess volume. This influence of the recess volume 

on the stiffness and damping coefficients is induced 

through the coefficient 1 defined by equation (23) 

multiplied by the frequency number . The recess 

volume influence manifests only when is a vibratory 

movement of the journal.  

 

 

Figure 13. Normalized damping and stiffness versus the 

feeding parameter t (a) L/D = 0.5, (b) L/D = 1, (c) L/D 

=1.5 

 

Figure 13 shows the graph of the normalized bearing 

coefficients (damping and stiffness) versus the feeding 
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parameter t.  The bearing number () is zero, therefore 

the normalized damping and stiffness coefficients are 

calculated for static conditions. The transitions from 

“unchoked flow” to “choked flow” are marked with a 

circular dot on each plot in the set of figures. It can be 

seen that the transition occurs for a value of the feeding 

parameter slightly smaller than the value of the feeding 

parameter associated with the maximum stiffness (and 

local minimum damping).  This pattern possible 

explanation may be that for “choked flow”, the 

dimensionless mass flow (m0) through the bearing 

remains constant at all times regardless, of the increase 

of the supply pressure.  Therefore, the radial force and 

respectively the normalized stiffness coefficient, which 

are dependent on the supply pressure, will achieve 

maximum values around this transition point.  The 

graphs show that higher values of the supply pressure 

have the effect of increasing the normalized stiffness. 

The effect of higher values of the supply pressure on the 

normalized damping coefficient is negligible because it 

is a hydrodynamic effect.  For higher values of the 

dimensionless supply pressure the feeding parameter at 

which the flow transition occurs is closer to the values 

of the feeding parameter associated with the local 

extremes of the normalized damping and stiffness 

coefficients. The graphs also show that an increase in 

the dimensionless bearing length results in an increase 

of the normalized damping coefficient and only in a 

slight decrease of the normalized stiffness. 

 

 

 

 

Figure 14. Eccentric Steady State E.P.B. Dimensionless 

load versus dimensionless eccentricity, (L/D = 1), (a) 

t=0.1, (b) t=1, (c) t=5 

 

Figure 14 (a), (b), (c) shows the variation of the load 

capacity versus the eccentricity.  The dimensionless 

length has the value 1.  In all the cases the increase in 

the eccentricity results in the increase of the load 

capacity. An increase in supply pressure has also the 

effect of increasing the load capacity. The effect of 

increasing the feeding parameter t on the load capacity 

is more evident for low values of the eccentricity ratio.  

For large values of eccentricity (ε0 ≥ 0.6) the feeding 

parameter does not change the values of the absolute 

force.   

 
5. CONCLUSIONS 
 

This paper presents a novel method which generates the 

solution of Reynolds boundary value differential 

equation as a combination of the solutions of two initial 

value problems (IVP). By using the linearized PH 

theory, the results for the concentric E.P.B. can be used 

for solving the steady state eccentric E.P.B.  

 

The method was also used to investigate the influence 

of the feeding recess volume on the cylindrical whirl 

threshold ratio and bearing coefficients as well as for 

the calculation of the transition point between unchoked 

to choked flow. The results have engineering 

significance as the EPB coefficients are shown to vary 

considerably due to the interaction between the recces 

volumes and the journal vibration. Also, the transition 

from chocked to unchoked flow changes the gas bearing 

dimensionless flow and, as a result, the inlet pressure 

values. 

 

The Mathematica program used to implement the 

proposed method has the advantage that it does not 

require grid spacing or an estimated number of 

intermediate points. It employs standard Mathematica 

build-in symbols, therefore easier to design and use for 

engineering applications. The calculated results and 

graphs are in fair agreement with available foundational 

experimental and theoretical published work. With 

further modifications the proposed method may be 
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suitable for the analysis of the whirl and hammer effect 

instability of a loaded, eccentric E.P.B. 
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