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Abstract: The accurate prediction of the mechanical properties of foundry alloys is a rather complex charge 
given the substantial variability of metallurgical conditions that can be created during casting even in the 
presence of minimal variations in the constituents and in the process parameters. In this study an 
application of intelligent methods, based on the machine learning, to the estimation of the hardness of a 
traditional spheroidal cast iron and a less common compact graphite cast iron is proposed. Microstructures 
are used as inputs to train the neural networks, while hardness is obtained as outputs. As general result, it is 
possible to admit that ‘light’ open source self-learning algorithms, combined with databases consisting of 
about 20-30 measures are already able to predict hardness properties with errors below 15%.  
 
Keywords: Hardness prediction, Artificial Intelligence (AI), Machine Learning (ML), nodular/spheroidal cast 
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1. INTRODUCTION  
 

The family of cast irons consists of a large 
number of alloys, each one qualified by its 
own characteristics in terms of metallurgic 
composition, mechanical properties, surface 
resistance, and, ultimately, practical use. 
Perhaps, exactly for this variability, cast iron is 
one of the most used materials in industrial 
history and in the present by mankind [1].  

The first attempts at producing cast iron in 
the Mediterranean basin can be traced back to 
over 1000 BC and tower ovens were found in 
Sweden, dated between 1150 and 1350. 

Few modifications (as additives inoculation) 
are sufficient to produce materials with very 
different characteristics and applications, from 
the common gray iron to the high performing 
ductile cast iron.  

This complexity in properties estimation is 
even more evident in the case of superficial 

features as the hardness. In this case, beyond 
all other aspects dealing with the overall 
variability of material characteristics, also 
additional considerations related to local 
effects in cooling start to be predominant. 

However, limiting to the industrial purposes, 
often it would be sufficient to have quick 
indications regarding these properties, even if 
not extremely precise. In this study intelligent 
methods based on machine learning (ML) are 
proposed to estimate the hardness of a 
traditional spheroidal cast iron (SGI) and of a 
less common compact graphite cast iron (CGI).  

Microstructural macroindicators, as, e.g., 
the quantity of graphite, ferrite, perlite in the 
alloy, acquired by microstructures, are used as 
inputs to train three (3) different ML 
algorithms, while hardness properties (in HB) 
are obtained as outputs.  

Two datasets from tests were considered, 
one per each material, consisting of 25-30 
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samples, while comparisons were done by a 
direct correlations with the estimations. 

 
2. EVALUATION METHODS 

 
Several methods of ML can be conveniently 

considered. In the present work, according to 
preceding similar experiences, as detailed in 
[2], the following ones were preferred. 

 
2.1 Random Forest (RF) 

 

The RF is one of the most popular and 
extremely effective methods for solving the 
problems of machine learning, such as 
classification and regression [3].  

A NN is a structure (network) consisting of a 
set of interconnected links (artificial neurons). 
Each link has a characteristic input / output 
and implements a local calculation or function. 
The output of any link is determined by the 
characteristics of its input / output, its 
relationship with other links, as well as 
external inputs, if any. 

In terms of efficiency, it competes with 
support vector machines, neural networks and 
boosting, although it certainly does not lack its 
shortcomings. In appearance, the learning 
algorithm is very simple (in comparison with 
the learning algorithm of the support vector 
machines). The basic ideas laid down in 
Random Forest model (binary decision tree, 
bootstrapping aggregation or bagging, random 
subspace method and decorrelation). 

 
2.2 Neural Network (NN) 

 
The NN also represents a quite common 

strategy in problem solving. A NN can be used 
to build an efficient encryption system using a 
constantly changing key. The NNs offer a very 
powerful and general structure for 
representing a non-linear mapping of several 
input variables for several output variables. A 
NN can be considered as a suitable choice for 
functional forms used for encryption and 
decryption operations.  

The NN topology is an important issue, 
since the application of the system depends on 

it. Therefore, since the application is a 
calculation problem, a multi-layered topology 
was used. Then, the NNs offer a very powerful 
and general structure for representing a non-
linear mapping of several input variables for 
several output variables. The process of 
determining the values of these parameters on 
the basis of a data set is referred to as training 
or training, and therefore the data set is 
usually referred to as a training set. In 
particular, a NN can be considered as a 
suitable choice for functional forms used for 
encryption and decryption operations. 

 
2.3 k-nearest neighbors (kNN) 

 

The kNN is a non-parametric method used 
for classification and regression [5]. The input 
consists of the k closest training examples in 
the feature space. The output depends on 
whether k-NN is used for classification or 
regression.  

In k-NN classification, the output is a class 
membership. An object is classified by a 
plurality vote of its neighbors, with the object 
being assigned to the class most common 
among its k nearest neighbors (k is a positive 
integer, typically small). If k = 1, then the 
object is simply assigned to the class of that 
single nearest neighbor. In k-NN regression, 
the output is the property value for the object. 
This value is the average of the values of its k 
nearest neighbors. The k-NN is a type of 
instance-based learning, or lazy learning, 
where the function is only approximated 
locally and all computation is deferred until 
classification. The k-NN algorithm is among the 
simplest of all machine learning algorithms.  
Both for classification and regression, a useful 
technique can be used to assign weight to the 
contributions of the neighbors, so that the 
nearer neighbors contribute more to the 
average than the more distant ones. For 
example, a common weighting scheme 
consists in giving each neighbor a weight of 
1/d, where d is the distance to the neighbor.  

The neighbors are taken from a set of 
objects for which the class (for k-NN 
classification) or the object property value (for 
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k-NN regression) is known. This can be thought 
of as the training set for the algorithm, though 
no explicit training step is required. A 
peculiarity of the k-NN algorithm is that it is 
sensitive to the local structure of the data.  

 
3. DATA ESTIMATIONS 
 

Measures used in this investigation for 
training the ANNs derived from mechanical 
and tribological tests already discussed in 
details in previous works [6-8]. In particular, in 
accordance with [8] the datasets consist of 27 
samples in SGI and 21 samples in CGI.  

As input for training the ANN, the following 
metallographic parameters were chosen: 

- Graphite 
- Ferrite 
- Perlite 
- Grade of nodularity 
- Grade of vermicularity 

These data were provided in terms of single 
values estimated by micrographs: each sample 
(SGI and CGI) provided a specific set of 5 (five) 
values. Every set (21+27) of metallographic 
characteristics was combined with the related 
hardness property as measure by test. 

ANN evaluations were implemented by 
Orange algorithms, an open source machine 
learning and data visualization system [9]. 
The ANN was learned by these data and 
provided outputs in terms of HB hardness. In 
particular, per each sample, it provided 3 
(three) different estimations of hardness in 
accordance with the 3 (three) specific 
methods used: 

- Random Forest (RF) 
- Neural Network (NN) 
- k-Nearest Neighbors (kNN) 

These values are reported in table 1 and 2. 
Table 3 reports the related values of: 

- mean (µ),  
- standard (σ) 
- relative standard (σ%) deviation 
- Pearson correlation coefficient (ρxy)  

In the way to show the overall variability of 
values and permit a comparison of methods. 

Table 1. SGI Hardness as measured and estimated 

N. HB RF NN kNN 

1 165 182 168 181 

2 166 174 171 171 

3 167 178 178 173 

4 168 182 182 169 

5 169 182 171 168 

6 171 182 182 169 

7 171 182 182 166 

8 173 171 182 171 

9 173 182 184 165 

10 174 181 178 167 

11 176 204 184 165 

12 178 182 181 165 

13 178 181 182 171 

14 180 176 206 183 

15 181 178 178 169 

16 181 173 173 165 

17 182 178 178 171 

18 182 173 171 165 

19 182 178 171 171 

20 183 184 206 180 

21 184 180 176 176 

22 185 169 182 169 

23 186 190 204 180 

24 190 185 206 180 

25 204 206 206 206 

26 206 183 190 180 

27 206 204 204 180 

Table 2. CGI Hardness as measured and estimated 

N. HB RF NN kNN 

1 132 148 137 137 

2 136 141 141 139 

3 137 145 145 142 

4 139 142 136 136 

5 141 142 144 142 

6 142 147 144 141 

7 142 151 156 147 

8 144 142 149 141 

9 144 142 145 137 

10 145 132 137 137 

11 146 150 149 147 

12 147 147 132 132 

13 147 147 151 151 

14 147 147 151 151 

15 148 150 147 132 

16 149 147 156 144 

17 150 146 148 146 

18 150 142 147 142 

19 151 147 147 147 

20 151 147 147 147 

21 156 147 151 141 
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Table 3. Mean (µ), standard deviation (σ) and 
relative standard (σ%) deviation, and, finally, the 
Pearson correlation coefficient (ρxy) for SGI and CGI 
hardness, as measured (HB) and estimated 

 
HB RF NN kNN  

µ 180 182 184 173 

SG
I σ 11 9 12 9 

σ% 6% 5% 7% 5% 

ρxy 1.00 0.46 0.59 0.56 

µ 144 145 146 142 

C
G

I σ 5 4 6 5 

σ% 4% 3% 4% 3% 

ρxy 1.00 0.17 0.43 0.28 

 
4. RESULTS 

 
Measures and estimations can be graphically 

observed and compared in Figure 1 for SGI and 
CGI. In particular it can be observed the estimation 
provided by the NN method that, according to the 
Pearson correlation coefficients (ρxy) in Table 3 can 
be considered the most appropriate evaluation 
method. In fact, with value of 0.59 and 0.43 in the 
case of, respectively, SGI and CGI, it demonstrates 
a good (even not perfect) correlation between the 
experimental dataset and the estimated hardness.  
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Figure 1. Measured and estimated hardness (HB) 
for SGI (up) and CGI (down) 
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Figure 2. Overlapping between measures and 
estimations (in the case of SGI and NN) 

This estimation by the NN method is able to 
guarantee a substantial coincidence on the 
average values of hardness (184 vs 180 in the 
case of SGI, 146 vs 144 for CGI) and its variability 
(e.g. in terms of relative standard deviations). It 
means that, as evident in Figure 2, there is a 
significant overlapping between the density 
distributions able to represent measures and 
estimations in terms of probability. 

Moreover, all methods for Machine Learning 
under investigation seem able to provide an 
adequate estimation, especially when considered 
the real values. In Figure 3 it is shown, for instance 
in the case of SGI, the influence of the choice (MF, 
NN or kNN) in the estimation.  
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Figure 3. Comparison between the estimation 
methods (in the case of SGI) 

In particular, in the graph it is possible to see 
how the variability in hardness predictions was 
limited within a range of 30% respect to the 
average measure. This result can be considered 
more than appropriate concerning that: 

 Even if the specimens were extracted from 
the similar casting conditions, the 
experimental values were characterized by a 
certain intrinsic variability (σ = 11). This 
variability was transferred in the ANN 
evaluation even if with a tendency to a 
reduction. 

 The use of ANN has not been optimized in this 
case, nor as structure or training. This choice 
is related to a specific strategy aiming at 
demonstrating the applicability of the ANN 
theory without entering in further details.  

 

5. CONCLUSION  
 

The present research deals with the use of 
Artificial Intelligence (AI) and Machine 
Learning (ML) in the prediction of hardness of 
spheroidal cast iron (SGI) and compact 

30% 
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graphite cast iron (SGI). Results from previous 
experiments were used to train three ANNs, 
based on three different principles. Open 
source and easy accessible algorithms were 
used. Even if in the presence of a limited 
number of measures (20-30), the ANNs, 
independently of the specific network, were 
able to predict the hardness with an 
acceptable confidence (±15%). 

It is believed that a greater accuracy could 
be easily achieved by: i) increasing the 
sample of measures on which the ANN is 
trained; ii) optimizing the ANN in terms of 
depth and quality of analysis (‘deep 
learning’), but also testing the opportunity to 
choose other methods of estimation (as 
Multiple Regression, Nearest Neighbors, 
Genetic Programming, Support Vector 
Machine…); iii) using microstructural 
information directly at a level of details. 
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